UI - Skripsi Membership :: Back

UI - Skripsi Membership :: Back

Klasifikasi subtipe penyakit parkinson: aplikasi metode decision tree, regresi logistik, dan logit leaf model = Parkinson's disease subtype classification: application of decision tree, logistic regression, and logit leaf model

Andre Nurrohman; Sarini Abdullah, supervisor; Hendri Murfi, supervisor; Dian Lestari, examiner; Mila Novita, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019)

 Abstract

Penyakit Parkinson terbagi dalam dua subtipe, yaitu Tremor Dominant (TD) dan Postural Instability/Gait Dominant (PIGD). Tiap subtipe memiliki perbedaan dalam penanganan klinis, sehingga perlu dilakukan klasifikasi subtipe penyakit Parkinson. Dalam Statistika, ada beberapa model yang membahas klasifikasi diantaranya adalah decision tree, regresi logistik, dan logit leaf model (LLM). LLM merupakan model campuran dari decision tree dan regresi logistik yang diusulkan oleh De Caigny et al. (2018). Penulisan ini membahas klasifikasi subtipe penyakit Parkinson menggunakan model klasifikasi statistika beserta penanganan masalah imbalanced data yang terjadi pada data penyakit Parkinson. Diperoleh model klasifikasi regresi logistik dengan melakukan proses SMOTE ± = 600, = 200 untuk menangani masalah imbalanced data. Model tersebut memberikan akurasi sebesar 98,83%, sensitivitas sebesar 98,41%, dan spesifisitas sebesar 99,07%.

Parkinsons Disease has two sub-types which are Tremor Dominant (TD) and Postural Instability/Gait Difficulty (PIGD). Each subtype has the difference in clinical treatment, so it is necessary to classify Parkinsons Disease subtypes. In Statistics, there are statistical models for classifying such as decision tree, logistic regression, and logit leaf model (LLM). LLM is a hybrid model from decision tree and logistic regression that proposed by (De Caigny et al., 2018). In this thesis discuss Parkinsons Disease Classification using statistical models with imbalanced data problem handling happen in Parkinson`s Disease data. For the result, logistic regression by processing SMOTE ± = 600, = 200 to handle data imbalanced problem. The model provides an accuracy of 98,83%, sensitivity of 98.41%, and specificity of 99.07%.

 Digital Files: 1

Shelf
 S-Andre Nurrohman.pdf :: Download

LOGIN required

 Metadata

Collection Type : UI - Skripsi Membership
Call Number : S-Pdf
Main entry-Personal name :
Additional entry-Personal name :
Additional entry-Corporate name :
Study Program :
Subject :
Publishing : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
Cataloguing Source LibUI ind rda
Content Type text
Media Type computer
Carrier Type online resource
Physical Description xiv, 65 pages : illustration ; appendix
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI, Lantai 3
  • Availability
  • Review
  • Cover
Call Number Barcode Number Availability
S-Pdf 14-20-944744505 TERSEDIA
Review:
No review available for this collection: 20486450
Cover