Kami telah melakukan studi ab-initio pada hexagonal boron nitride (hBN) yang disisipkan antara lapisan-lapisan Ni(111) untuk menyelidiki antarmuka dari struktur bahan ini. Dalam studi ini, kami menggunakan sebanyak tiga lapisan atom Ni dalam satu bagian lempeng Ni dalam Ni(111)/hBN/Ni(111) untuk menentukan susunan atom yang tepat di daerah antarmuka. Perhitungan density functional theory untuk 36 struktur, menjadi dua kali lipat bergantung pada arah momen magnetik, yaitu konfigurasi paralel (PC) dan konfigurasi anti-paralel (APC), menunjukkan bahwa jumlah ikatan kimia lemah yang terbentuk dalam hibridisasi pd antara atom N dan Ni memiliki peranan yang sangat penting. Sebanyak maksimum dua ikatan hibridisasi pd menstabilkan struktur ini, dengan APC terbukti sebagai konfigurasi yang sangat stabil dan sesuai dengan hasil eksperimen terdahulu. Pada keadaan energi terendah, momen magnetik terinduksi pada atom N muncul ketika atom N digeser mendekati salah satu dari atom-atom N. Menariknya, arah momennya diubah oleh posisi lapisan N dan menghasilkan keadaan bi-stable dengan cara polarisasi elektrik ketika APC dipilih. Perhitungan probabilitas transmisi Ni/hBN/Ni yang telah memiliki struktur antarmuka yang tepat pada pusat persambungan, menunjukkan efek spin-filtering dimana arus dengan spin terpolarisasi dikontrol dengan medan listrik ketika pembalikan yang diinduksi sebuah medan diberikan.
We undertook an ab-initio study of hexagonal boron nitride (hBN) sandwiched between Ni(111) layers to examine the interface of this material structure. We considered Ni(111) /hBN/Ni(111) with a slab with three Ni atomic layers to determine the exact atom arrangement at the interface. The density functional theory calculations for 36 stacking arrangements, which are doubled with respect to the magnetic alignment of slabs in an anti-parallel configuration (APC) and parallel configuration (PC), revealed that the number of formed weak chemical bonds, in the pd-hybridization between the N and Ni atoms, is decisive. A maximum of two pd-hybridization bonds stabilized the structure, with APC proving to be the most favorable magnetic alignment, in line with the results of previous experimental studies. In the lowest energy state, an induced magnetic moment at an N site appears when N is moved closer to one of the Ni atoms. Interestingly, the moment direction is switched by the position of the N layer in the resulting bi-stable state with electrical polarization when APC is chosen. The transmission probability calculation of Ni/hBN/Ni having the determined interface structure at the center of the junction exhibits a spin-filtering effect where the spin-polarized current is controlled by the electric field when a field-induced reversal of the polarization is realized.