ABSTRACTModel hurdle adalah model alternatif untuk mengatasi penyebaran berlebihan (varians datanya adalah lebih tinggi dari nilai rata-rata) yang disebabkan oleh kelebihan nol. Model rintangan dapat memodelkan secara terpisah variabel respons yang memiliki nilai nol dan positif, melibatkan dua proses yang berbeda. Proses pertama adalah proses biner yang menentukan apakah variabel respon memiliki nilai nol atau nilai positif, dan dapat dimodelkan dengan biner model, menggunakan regresi logistik. Untuk variabel respons positif, kemudian lanjutkan ke proses kedua, yaitu proses yang hanya mengamati jumlah positif. Yang positif count dapat dimodelkan dengan model Zero-Truncated menggunakan regresi Poisson. Rintangan model juga dikenal sebagai model dua bagian. Estimasi parameter menggunakan Bayesian metode. Kombinasi informasi sebelumnya dengan informasi dari data yang diamati membentuk distribusi posterior yang digunakan untuk memperkirakan parameter. Distribusi posterior bentuk yang diperoleh tidak tertutup, sehingga diperlukan teknik komputasi, yaitu Markov Chain Monte Carlo (MCMC) dengan algoritma Gibbs Sampling. Metode ini diterapkan
ke data Parkinson untuk memodelkan frekuensi komplikasi motorik pada 300 Parkinsonpasien. Data tersebut digunakan dari Parkinson's Progressive Markers Initiative (PPMI, 2018). Hasil yang diperoleh adalah MDS-UPDRS (Movement Disorder Society-Unified Skala Peringkat Penyakit Parkinson) bagian 1, MDS-UPDRS bagian 2, dan MDS-UPDRS bagian 3 terkait secara signifikan MDS-UPDRS bagian 4 di kedua tahap.
ABSTRACTThe obstacle model is an alternative model for overcoming excessive spread (the data variant is higher than the average value) which is questioned by zero excess. The obstacle model can separately model response variables that have zero and positive values, involving two different processes. The first process is a binary process that determines whether the response variable has a zero value or a positive value, and can be modeled with a binary model, using logistic regression. For positive response variables, then proceed to the second process, which is a process that is only positive. The positive one calculated can be modeled with a Zero-Truncated model using Poisson regression. The Obstacle Model is also known as the two part model. Parameter estimation using the Bayesian method. The combination of previous information with information from data collected collects the distributions used for parameter estimation. The posterior distribution of the obtained form is not closed, computational techniques are needed, namely Markov Chain Monte Carlo (MCMC) with Gibbs Sampling algorithm. This method is applied to Parkinson's data to model the frequency of motor complications in 300 Parkinson's patients. The data is used from Parkinson's Progressive Markers Initiative (PPMI, 2018). The results obtained are MDS-UPDRS (Movement Disorder-Community Parkinson's Disease Assessment Scale) part 1, MDS-UPDRS part 2, and MDS-UPDRS part 3 which significantly related MDS-UPDRS part 4 in both glasses.