UI - Skripsi Membership :: Back

UI - Skripsi Membership :: Back

Implementasi Iterative K-Means -+ and Ant Colony Optimization (ACO) pada Masalah Optimisasi Portofolio = Implementation of Iterative K-Means -+ and Ant Colony Optimization (ACO) in Portfolio Optimization Problem

Muhammad Alvin Rezani; Gatot Fatwanto Hertono, supervisor; Bevina Desjwiandra Handari, supervisor; Hengki Tasman, examiner; Nora Hariadi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019)

 Abstract

ABSTRAK
Optimalisasi portofolio bertujuan agar investor mendapatkan return tertinggi dan mendapatkan risiko terendah. Untuk mencapai tujuan ini, investor melakukan diversifikasi untuk meningkatkan kinerja portofolio dengan meminimalkan risiko portofolio. Pada penelitian ini digunakan algoritma Iterative K-Means -+ sebagai metode clustering dan Ant Colony Optimization (ACO). Pengelompokan digunakan untuk diversifikasi portofolio berdasarkan rasio keuangan masing-masing saham. K-Means berulang -+ ini memperbaiki solusi dari K-Means dengan menghapus 1 cluster (minus), membagi 1 cluster (plus) dan re-clustering di setiap iterasi. Setelah pengelompokan, beberapa saham dipilih dan bobotnya ditentukan dengan metode metaheuristik, yaitu:
Algoritma Ant Colony Optimization (ACO). Hasil numerik dari metode ini dievaluasi dengan data yang sebenarnya.
ABSTRACT
Portfolio optimization aims for investors to get the highest return and get the lowest risk. To achieve this goal, investors diversify to improve portfolio performance by minimizing portfolio risk. In this study, the Iterative K-Means -+ algorithm was used as a clustering method and Ant Colony Optimization (ACO). Grouping is used to diversify the portfolio based on the financial ratios of each stock. Iterative K-Means --+ this improves the solution of K-Means by removing 1 cluster (minus), dividing 1 cluster (plus) and re-clustering in each iteration. After grouping, several stocks are selected and their weights are determined by the metaheuristic method, namely:
Ant Colony Optimization (ACO) Algorithm. The numerical results of this method are evaluated with actual data.

 Digital Files: 1

Shelf
 S-Muhammad Alvin Rezani.pdf :: Download

LOGIN required

 Metadata

Collection Type : UI - Skripsi Membership
Call Number : S-pdf
Main entry-Personal name :
Additional entry-Personal name :
Additional entry-Corporate name :
Study Program :
Subject :
Publishing : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2019
Cataloguing Source LibUI ind rda
Content Type text
Media Type computer
Carrier Type online resource
Physical Description xiv, 80 pages : illustration ; appendix
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI
  • Availability
  • Review
  • Cover
Call Number Barcode Number Availability
S-pdf 14-21-261626806 TERSEDIA
Review:
No review available for this collection: 20497196
Cover