UI - Skripsi Membership :: Back

UI - Skripsi Membership :: Back

Analisis Pengelompokan Sekolah Menengah Atas (SMA) di Indonesia berdasarkan Fasilitas Pendidikan = Clustering Analysis of Senior High School in Indonesia based on Educational Facilities

Mahlia Amanda Putri; Sarini Abdullah, supervisor; Yekti Widyaningsih, examiner; Rianti Setiadi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstract

ABSTRAK
Dalam mendukung pendidikan di Indonesia, pemerintah telah memberikan perhatian dengan cara mengalokasikan Anggaran Pendapatan dan Belanja Negara (APBN). Namun, masalah pendidikan pada jenjang Sekolah Menengah Atas (SMA) masih ditemukan, dimana salah satu akar permasalahannya adalah kurangnya fasilitas pendidikan. Jumlah SMA yang relatif banyak merupakan salah satu penghambat dalam penyaluran dana APBN tersebut. Dengan demikian, analisis pengelompokan SMA berdasarkan fasilitas pendidikan di Indonesia diharapkan dapat menjadi salah satu alternatif bagi pemerintah dalam memprioritaskan penyaluran dana APBN secara cepat dan tepat. Banyaknya observasi yang digunakan adalah 13.486 SMA dengan 9 variabel kategorik fasilitas pendidikan yang tercatat di website Kementerian Pendidikan dan Kebudayaan pada bulan Agustus tahun 2019. Adapun metode yang digunakan adalah Robust Clustering Using Link (ROCK) yang diyakini mempunyai tingkat akurasi yang baik dan mampu menangani data kategorik dalam jumlah yang besar. Untuk mendapatkan profil kelompok yang lebih jelas, metode ROCK dimodifikasi dengan melakukan Nested Clustering. Hasil dari penelitian ini menunjukkan bahwa terbentuk 14 kelompok SMA yang memiliki karakteristik masing-masing. Diperoleh kelompok 3 merupakan kelompok yang relatif baik dan kelompok 1a merupakan kelompok yang relatif kurang baik. Secara umum, SMA di Indonesia membentuk kelompok yang memiliki kebutuhan fasilitas pendidikan yang berbeda dan memerlukan perhatian dari pemerintah.

ABSTRACT
The government has given attention to support education in Indonesia by allocating the state budget (APBN). However, the problem of education at the senior high school level is still found, which one of the root problems is the lack of educational facilities. The large number of senior high schools in Indonesia becomes one of the barriers to distributing APBN funds. Thus, the analysis of the grouping of senior high schools based on educational facilities in Indonesia is expected to be an alternative for the government in prioritizing the distribution of APBN funds quickly and accurately. The number of observations is 13,486 with nine categorical variables recorded on a website of the Ministry of Education and Culture in August 2019. The method used is Robust Clustering Using Link (ROCK), which is believed has good accuracy and good to handle many categorical data. To get clearer profile of cluster, ROCK method modified with do Nested Clustering. The results of this study indicate that 14 clusters were formed and have their profiles. Cluster 3 is relatively good cluster while cluster 1a is relatively poor cluster. In general, high schools in Indonesia consist of groups that have different educational facility needs and require attention from the government.

 Digital Files: 1

Shelf
 S-Mahlia Amanda Putri.pdf :: Download

LOGIN required

 Metadata

Collection Type : UI - Skripsi Membership
Call Number : S-pdf
Main entry-Personal name :
Additional entry-Personal name :
Additional entry-Corporate name :
Study Program :
Subject :
Publishing : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Cataloguing Source LibUI ind rda
Content Type text
Media Type unmediated
Carrier Type online resource
Physical Description xxiii, 76 pages : illustration ; 28 cm + appendix
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan Lantai 3
  • Availability
  • Review
  • Cover
Call Number Barcode Number Availability
S-pdf 14-22-75405336 TERSEDIA
Review:
No review available for this collection: 20503734
Cover