eBooks :: Kembali

eBooks :: Kembali

Clustering methods for big data analytics techniques, toolboxes and applications

edited by Olfa Nasraoui and Chiheb-Eddine Ben N'Cir (Springer Nature, 2019)

 Abstrak

This book highlights the state of the art and recent advances in Big Data clustering methods and their innovative applications in contemporary AI-driven systems. The book chapters discuss Deep Learning for Clustering, Blockchain data clustering, Cybersecurity applications such as insider threat detection, scalable distributed clustering methods for massive volumes of data; clustering Big Data Streams such as streams generated by the confluence of Internet of Things, digital and mobile health, human-robot interaction, and social networks; Spark-based Big Data clustering using Particle Swarm Optimization; and Tensor-based clustering for Web graphs, sensor streams, and social networks. The chapters in the book include a balanced coverage of big data clustering theory, methods, tools, frameworks, applications, representation, visualization, and clustering validation.

 File Digital: 1

Shelf
 Clustering Methods for Big Data Analytics.pdf :: Unduh

 Metadata

Jenis Koleksi : eBooks
No. Panggil : e20507207
Entri tambahan-Nama orang :
Subjek :
Penerbitan : Switzerland: Springer Nature, 2019
Sumber Pengatalogan : LibUI eng rda
Tipe Konten : text
Tipe Media : computer
Tipe Pembawa : online resource
Deskripsi Fisik : ix, 187 pages : illustration
Tautan : https://doi.org/10.1007/978-3-319-97864-2">
Lembaga Pemilik :
Lokasi :
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
e20507207 02-20-286961937 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20507207
Cover