Akrilamida (AA) merupakan senyawa karsinogenik yang sering ditemukan dalam bahan makanan. Biosensor AA berbasis hemoglobin (Hb) kemudian dikembangkan karena biokompatibilitas dan kapasitas Hb untuk bergabung dengan molekul lain, dan Hb berperan sebagai bioreseptor protein aktif sehingga dapat berikatan dengan akrilamida dan membentuk adduct Hb-AA. Pada penelitian ini studi komputasi dilakukan untuk simulasi penambatan molekul (molecular docking) akrilamida dan senyawa-senyawa interferensinya pada hemoglobin. Interaksi molekul yang terjadi dipelajari melalui ΔGbinding yang diperoleh. Pengaruh kehadiran senyawa interferensi kemudian dibandingkan dengan respons arus pada sensor elektrokimia yang telah dilakukan penelitian sebelumnya. Hasil yang diperoleh menunjukkan semua senyawa interferensi nilai ΔGbinding yang lebih rendah dari akrilamida, kecuali natrium asetat. Nilai ΔGbinding pada residu Hb cabang valin-α untuk asam askorbat sebesar -5,9269 kcal/mol, kafein sebesar -5,6429 kcal/mol, glukosa -6,0497 kcal/mol, natrium asetat sebesar -3,6654 kcal/mol, dan melamin sebesar -4,8279 kcal/mol. Pada cabang valin-β, diperoleh ΔGbinding asam askorbat sebesar -5,6727 kcal/mol, kafein sebesar -5,9915 kcal/mol, glukosa sebesar -6,0212 kcal/mol, natrium asetat sebesar -3,7198 kcal/mol, dan melamin -4,8021 kcal/mol. Sehingga, dapat disimpulkan bahwa senyawa interferensi berkompetisi dengan akrilamida untuk berikatan dengan hemoglobin, sementara akrilamida lebih mudah berinteraksi dengan hemoglobin pada residu valin-α
Acrylamide (AA) is a carcinogenic compound found in food ingredients. The hemoglobin (Hb)-based acrylamide biosensor was then developed because of biocompatibility and the capacity of Hb to join with other molecules. Hb was developed because it is an active bioreceptor protein that can bind to acrylamide to form Hb-AA adduct. In this study, a computational study was conducted to simulate molecular docking for acrylamide and other compounds to hemoglobin. The molecular interactions were studied with the obtained ΔGbinding. The effect of the presence of interference was then compared with the responses of the electrochemical sensor conducted in the previous research. The results obtained in this study showed the ΔGbinding value of all interferent compounds were lower than that of acrylamide with sodium acetate as the exception. The ΔGbinding at the residual hemoglobin branch of valin-α, which interacted to ascorbic acid was -5.9269 kcal/mol, while to caffeine was -5.66429 kcal/mol, to glucose was -6.0497 kcal/mol, to sodium acetate was -3.6654 kcal/mol, and to melamine was -4.8279 kcal/mol. In the valin-β residues, ΔGbinding of ascorbic acid was -5.6727 kcal/mol, caffeine was -5.9915 kcal/mol, glucose was -6.022 kcal/mol, sodium acetate was -3.7198 kcal/mol, and melamine was -4,8021 kcal/mol. Therefore, it can be concluded that all these compounds compete with acrylamide to bind to hemoglobin, while acrylamide is easier to use with hemoglobin in the valine-α residue.