UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Predictive Maintenance pada Sistem Integrasi Data Magnet Berbasis Machine Learning Menggunakan Metode Random Forest Regression = Predictive Maintenance on Magnet Data Integration System Based Machine Learning Using Random Forest Method.

Aziz Setia Aji; Djati Handoko, supervisor; Prawito, examiner; Santoso Soekirno, examiner; Suko Prayitno Adi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstrak

ABSTRAK
Badan Meteorologi Klimatologi dan Geofisika (BMKG) memiliki tugas pengamatan terhadap magnet bumi yang tersebar di Indonesia. Sensor magnetik bumi BMKG menghasilkan output data real-time. Penelitian ini berfokus pada model predictive maintenance pada sensor magnetik bumi berdasarkan output data sensor. Output data yang dihasilkan adalah dalam bentuk format delimited-space sehingga mudah untuk diproses. Komponen magnetik yang digunakan dalam penelitian ini adalah data komponen total magnet bumi (F) dari sensor. Pemrosesan data menggunakan bahasa pemograman python dan algoritma yang digunakan adalah metode random forest regression dengan membandingkan perbedaan nilai yang dihasilkan dengan data Indoesian Geomagnetic Maps for Epoch 2015.0 untuk kemudian dibuatkan model prediksi terhadap waktu. Proses tersebut digunakan untuk mengetahui apakah data yang dihasilkan masih dalam toleransi atau tidak. Tahapan dalam penelitian ini mulai dari pengumpulan data, pre-processing data, pembuatan model, hingga pengujian model dan validasi terhadap model. Penelitian ini menghasilkan estimasi waktu pemeliharan sebesar 14 hari pada data baseline nilai F dan sebesar 3 hari pada data delta F (ΔF).

ABSTRACT
The Meteorological, Climatological, and Geophysical Agency (BMKG) has the task of observing the earth magnets spread across Indonesia. Earth magnetic sensor of BMKG delivers real-time data output. The study focuses on the predictive maintenance model on the earth's magnetic sensor based on sensor data output. The resulting data output is in the form of delimited-space format so it is easy to process. The magnetic component used in this study is data on the earth's total magnetic component (F) from the sensor. Data processing uses python programming language and the algorithm used is a random forest regression method by comparing the value difference generated with the Indoesian Geomagnetic Maps for Epoch 2015.0 data for later created predictive models against time. The process is used to determine whether the resulting data is still in tolerance or not. The stages in this study range from data collection, pre-processing data, create model, model testing, and model validation. The study resulted in a 14-day maintenance time estimate of the baseline data F-value and 3-day in the delta F (ΔF) data.

 File Digital: 1

Shelf
 T-Aziz Setia Aji.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 100 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-Pdf 15-22-34706175 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20508535
Cover