UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Model Matematika Transmisi Malaria dengan Efek Vektor Bias, Pengobatan Bersaturasi, dan Fumigasi = Malaria Transmission Mathematical Model with the Effect of Vector-Bias, Saturation Treatment, and Fumigation

Michellyn Angelina; Dipo Aldila, supervisor; Gianinna Ardaneswari, supervisor; Hengki Tasman, examiner; Wed Giyarti, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstrak

Malaria adalah penyakit yang ditularkan melalui vektor (hewan perantara). Salah satu cara untuk membantu pemahaman dalam dinamika penularan penyakit malaria yaitu dengan menggunakan model matematika. Diharapkan model ini dapat memberikan wawasan yang lebih baik untuk mengurangi dampak beban malaria di masyarakat. Oleh karena itu, penulisan ini bertujuan untuk mengonstruksi model matematika transmisi malaria dengan bentuk SIS-UV melalui persamaan diferensial biasa berdimensi empat nonlinier. Penyebaran infeksi malaria yang dibuat dalam penulisan ini mempertimbangkan faktor bias oleh vektor, pengobatan bersaturasi pada manusia, dan fumigasi pada vektor. Analisis dilakukan dengan menyelidiki kestabilan titik keseimbangan dan bilangan reproduksi dasar (R0). Analisis tersebut menunjukkan jika bilangan reproduksi dasar kurang dari 1 (R0 < 1), maka titik keseimbangan bebas malaria akan stabil asimtotik lokal. Sementara itu, titik keseimbangan endemik akan selalu muncul jika R0 > 1. Ketika R0 = 1, terdapat kemungkinan munculnya fenomena bifurkasi mundur yang dijelaskan dengan menggunakan teorema Castillo-Chavez dan Song. Hal tersebut menunjukkan bahwa tetap terdapat titik keseimbangan endemik yang stabil meskipun R0 < 1. Selanjutnya, pendekatan numerik diberikan untuk menggambarkan hasil dari analisis teoritik. Hasil simulasi menunjukkan bahwa intervensi fumigasi merupakan parameter yang paling signifikan dalam merubah nilai bilangan reproduksi dasar (R0). Dengan demikian, intervensi fumigasi merupakan hal yang masuk akal untuk mengurangi kasus penyakit malaria dalam populasi.


Malaria is one of the most common vector-borne diseases. One of the options to help people to understand the dynamics of malaria transmission is by using a mathematical model. It provides better insights to reduce the impact of malaria burden within the community. Therefore, this talk aims to apply the SIS-UV model with the form of four-dimensional ordinary differential equations nonlinear. The mathematical model will be constructed by investigating the spread of malaria considering factors biased by vectors, saturated treatment in humans, and fumigation in vectors. The analysis is carried out by investigating the stability of the equilibrium points and basic reproduction numbers (R0). It shows that if the basic reproduction number is less than 1 (R0 < 1), then the malaria-free equilibrium point is locally asymptotically stable. Meanwhile, the endemic equilibrium point will always appear if R0 > 1. When R0 = 1, there is the possibility of a backward bifurcation phenomenon that is explained using the Castillo-Chavez and Song theorem. This shows that there is still a stable endemic equilibrium even though R0 < 1. Next, a numerical approach is given to illustrate the theoretical analysis. Simulation results show that fumigation intervention is the most significant parameter in changing the value of basic reproduction numbers (R0). Therefore, the selection of fumigation interventions is reasonable to eradicate malaria in the population.

 File Digital: 1

Shelf
 S-Michellyn Angelina.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xv, 95 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-Pdf 14-22-11653697 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20509441
Cover