UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Peramalan tingkat morbiditas tuberkulosis di Indonesia menggunakan temporal convolutional neural network dan exponential smoothing = Forecasting the tuberculosis morbidity rate in Indonesia using temporal convolutional neural network and exponential smoothing

Anak Agung Adi Widya Kusuma; Sri Mardiyati, supervisor; Dian Lestari, supervisor; Hendri Murfi, examiner; Alhadi Bustamam, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstrak

Tingkat morbiditas tuberkulosis (TB) di Indonesia menunjukkan banyaknya penduduk di Indonesia yang menderita TB. Tingkat morbiditas TB dapat digunakan oleh perusahaan asuransi untuk memprediksi risiko seseorang terkena TB sehingga perusahaan asuransi dapat menentukan premi yang akan dibebankan kepada pemohon asuransi berdasarkan risikonya. Oleh karena itu, kemampuan untuk memperkirakan tingkat morbiditas TB secara akurat sangat penting bagi perusahaan asuransi untuk dapat menentukan jumlah premi yang tepat namun tetap kompetitif. Penelitian ini bertujuan untuk membangun dan membandingkan dua model yang dapat digunakan untuk memprediksi angka morbiditas TB di Indonesia. Model ini dibangun menggunakan metode Temporal Convolutional Neural Network (TCNN) dan exponential smoothing. Data yang digunakan dalam penelitian ini diperoleh dari situs resmi Kementerian Kesehatan Republik Indonesia. Sebelum model dibangun, data yang digunakan dalam penelitian ini disusun menjadi dataset pelatihan dan validasi. Model tersebut dibangun dengan menggunakan dataset training dan divalidasi menggunakan dataset validasi. Hasil validasi model kemudian dievaluasi dan dibandingkan berdasarkan nilai mean squared error (MSE). Hasil dari penelitian ini menunjukkan bahwa model TCNN yang dibangun menghasilkan nilai MSE yang lebih rendah dari pada model exponential smoothing.

Tuberculosis (TB) morbidity rate in Indonesia shows the number of population in Indonesia who suffer from TB. The TB morbidity rate can be used by insurance companies to predict a person's risk of TB so that insurance companies can determine the premiums that will be charged to insurance applicants based on the risks. Thus, the ability to estimate the TB morbidity rate accurately is essential for insurance companies to be able to determine the right premium amount while remaining competitive. This study compared two models that can be used to predict TB morbidity rate in Indonesia. The model was built using the temporal convolutional neural network (TCNN) and exponential smoothing methods. The data that is used in this study are obtained from the official website of the ministry of health of the Republic of Indonesia. Before the model was built, the data used in this study were compiled into training and validation datasets. The model is built using a training dataset and validated using the validation dataset. The results of the model's validation are then evaluated and compared based on the value of the mean squared error (MSE). The result of this study shows that the TCNN model provides lower MSE compared to exponential smoothing.

 File Digital: 1

Shelf
 T-Anak Agung Adi Widya Kusuma.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xxii, 83 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 3
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-22-91641800 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20509598
Cover