Beberapa perusahaan asuransi memiliki produk asuransi kesehatan yang menjamin pembayaran klaim atas penyakit tuberkulosis. Salah satu komponen penentu tarif premi adalah tingkat morbiditas sehingga peramalan tingkat morbiditas merupakan hal yang penting bagi perusahaan asuransi. Penelitian ini membahas peramalan tingkat morbiditas tuberkulosis di Indonesia dengan menggunakan model jaringan
Recurrent Neural Network (RNN), yang merupakan bagian dari Deep Learning, dan
grey model. Performa dari kedua model tersebut dibandingkan melalui nilai
mean squared error (MSE) dan
mean absolute percentage error (MAPE) yang dihasilkan. Hasilnya menunjukkan bahwa
grey model memiliki akurasi yang lebih baik dibandingkan RNN.
Several insurance companies sell health insurance products that cover tuberculosis risk. One principal component to determine the insurance premium that must be paid by the insured is the morbidity rate. Therefore, morbidity rate forecasting is essential for an insurance company. In this research, we present the Indonesia tuberculosis morbidity rate forecasting using Recurrent Neural Network (RNN), which is part of deep learning, and grey model. The performance of two models is compared in term mean squared error (MSE) and mean absolute percentage error (MAPE). The results show that the grey model outperform the RNN.