UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Pengenalan Gesture dan Non Gesture pada kalimat SIBI (Sistem Isyarat Bahasa Indonesia) menggunakan TCRF (Threshold Conditional Random Field) = Word-gesture and Transitional-gesture Recognition of Indonesian Sign System (known as SIBI) Sentence using Threshold Conditional Random Field

I Gusti Bagus Hadi Widhinugraha; Erdefi Rakun, supervisor; Devi Yulianti, examiner; Wisnu Jatmiko, examiner; Aniati Murni Arymurthy, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2020)

 Abstrak

Bahasa isyarat merupakan suatu tatanan gerakan yang mewakili suatu kosakata pada bahasa tertentu dan memiliki fungsi untuk membantu penyandang tunarungu dalam mengatasi masalah berkomunikasi. Namun tidak semua masyarakat umum menguasai bahasa isyarat. Dari permasalahan tersebut, sistem penerjemah bahasa isyarat diperlukan dalam membantu proses komunikasi penyandang tunarungu. Sistem penerjemah memerlukan sebuah video gerakan bahasa isyarat untuk kemudian dapat dikenali Dalam sebuah video utuh yang berisi satu sequence gerakan kalimat isyarat terdapat dua jenis gerakan yaitu gerakan isyarat (gesture) yang mengandung arti dan gerakan transisi (non gesture). Pada penelitian ini diusulkan metode untuk menngenali gesture dan non gesture pada kalimat SIBI (Sistem Isyarat Bahasa Indonesia) menggunakan Threshold Conditional Random Field (TCRF). Data yang digunakan adalah 2.255 video rekaman gerakan untuk 28 isyarat kalimat pada SIBI yang di peragakan oleh  tiga orang guru dan dua orang murid dari SLB Santi Rama Jakarta. Untuk merepresentasikan data, pada penelitian ini dibandingkan teknik ekstraksi fitur skeleton, image, gabungan (gabungan antara fitur skeleton dan fitur image) dan MobileNetV2. Untuk klasifikasi digunakan metode TCRF dengan variasi nilai threshold dari 1 sampai 4. Berdasarkan hasil eksperimen, masing-masing teknik ekstraksi fitur menghasilkan akurasi terbaik sebesar 72.5% untuk skeleton dengan threshold 2, 70.3% untuk image dengan threshold 2, 68.5% untuk gabungan dengan threshold 2 dan 93.2% untuk MobileNetV2 dengan threshold 1.5. Berdasarkan akurasi tersebut teknik ekstraksi fitur dengan model MobileNetV2 dapat merepresentasikan data lebih baik dibandingkan dengan ekstraksi skeleton, image, dan gabungan


Sign language is a series of movements that represent the vocabulary of a particular language and is designed to help the hearing-impaired communicate. However, not everyone is familiar with the sign language gestures, so a sign language translation system would aid communication by allowing more people to understand sign language gestures. A video that contains a sequence of sign sentences with two types of movements, namely sign movements (word-gestures) which have represent language constructs, and transitional movements (transitional-gesture). A method to identify both word-gestures and transitional-gestures in a variant of the Indonesian Sign Language System called Sistem Isyarat Bahasa Indonesia (hereafter referred to as SIBI) sentences based on the Threshold Conditional Random Field (TCRF) was implemented. The dataset on which the model is trained, consists of 2,255 videos containing recorded movements for 28 commonly used sentences in SIBI, performed by three teachers and two students of the Santi Rama School (Sekolah Luar Biasa), a school for hearing-impaired students. Several feature extraction techniques were tested, including skeleton, image, skeleton-image combination and MobileNetV2. The classification method uses TCRF with variations in TCRF threshold values between 1 to 4 to recognize word-gestures and transitional-gestures, then deleting frames with transitional-gestures label, and obtaining accuracy from LSTM that recognizes words from the per-frame word-gesture label. The best accuracies achieved by each method were 72.5% for skeleton technique with a TCRF threshold of 2; 70.3% for image technique with a TCRF threshold of 2; 68.5 % for skeleton-image combination, with a TCRF threshold of 2; and 93.2% for MobileNetV2 with threshold 1.5. Using MobileNetV2 as a feature extractor yields significantly better results than previous feature extraction methods.

 File Digital: 1

Shelf
 T-I Gusti Bagus Hadi Widhinugraha.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xii, 78 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-21-833552375 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20510222
Cover