Polinomial karakteristik dan nilai eigen matriks antiketetanggaan dari graf helm berarah unisiklik = Characteristic polynomial and eigenvalues of antiadjacency matrix of directed unicyclic helm graph
Rizky Putra Okfradifa;
Siti Aminah, supervisor; Kiki Ariyanti Sugeng, supervisor; Silaban, Denny Riama, examiner; Suarsih Utama, examiner
(Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)
|
Graf berarah G didefinisikan sebagai pasangan terurut dari himpunan (V,E) yang ditulis dengan notasi G=(V,E) dimana V merupakan himpunan berhingga tak kosong yang disebut simpul, dan E adalah himpunan pasangan terurut anggota dari V yang disebut busur. Graf berarah unisiklik adalah graf berarah yang memuat tepat satu subgraf lingkaran. Graf helm berarah unisiklik Hn adalah graf yang diperoleh dari graf roda berarah Wn dengan menambahkan 1 pendant berarah pada tiap simpul lingkaran graf roda. Suatu graf berarah dapat direpresentasikan dalam beberapa bentuk matriks, salah satunya adalah matriks antiketetanggaan. Matriks antiketetanggaan adalah suatu matriks yang setiap entrinya merepresentasikan ada atau tidaknya busur berarah dari suatu simpul kesimpul lainnya. Pada skripsi ini dibahas mengenai polinomial karakteristik dan nilai eigen matriks antiketetanggaan graf helm berarah unisiklik. Bentuk umum dari koefisien-koefisien polinomial karakteristik dari matriks antiketetanggaan diperoleh dengan menjumlahkan nilai-nilai determinan matriks antiketetanggaan dari semua subgraf terinduksi siklik dan asiklik. Nilai-nilai eigen dari matriks antiketetanggaan dari graf helm berarah unisiklik diperoleh dengan mencari akar-akar dari polinomial karakteristik dengan faktorisasi polinomial
A directed Graph G is defined as ordered pairs from set (V,E) which is represented by notation G=(V,E) where V is a finite nonempty set of vertices and E is a set of ordered pairs of elements of V called edges. A directed unicyclic graph is a directed graph that has only one directed cycle subgraph. A directed unicyclic helm graph Hn is obtained from a directed wheel graph Wn by adjoining a directed pendant edge at each vertex of the cycle. A directed graph can be represented into several matrix representations, one of them is the antiadjacency matrix. The antiadjacency matrix is a matrix in which the entries represent whether there is a directed edge from one vertex to another. This paper discusses the characteristic polynomial and eigenvalues of the antiadjacency matrix of the unicyclic helm graph. The general form of the coefficients of the characteristic polynomial that obtained by adding all of the determinants of antiadjacency matrix from each induced acyclic and cyclic subgraphs. The eigenvalues of the antiadjacency matrix of the directed unicyclic helm graph obtained by factorization its characteristic polynomial.
S-Rizky Putra Okfradifa.pdf :: Unduh
|
Jenis Koleksi : | UI - Skripsi Membership |
No. Panggil : | S-pdf |
Entri utama-Nama orang : | |
Entri tambahan-Nama orang : | |
Entri tambahan-Nama badan : | |
Program Studi : | |
Subjek : | |
Penerbitan : | Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020 |
Bahasa : | ind |
Sumber Pengatalogan : | LibUI ind rda |
Tipe Konten : | text |
Tipe Media : | computer |
Tipe Carrier : | online resource |
Deskripsi Fisik : | xii, 35 pages : illustration ; appendix |
Naskah Ringkas : | |
Lembaga Pemilik : | Universitas Indonesia |
Lokasi : | Perpustakaan UI |
No. Panggil | No. Barkod | Ketersediaan |
---|---|---|
S-pdf | 14-22-13639252 | TERSEDIA |
Ulasan: |
Tidak ada ulasan pada koleksi ini: 20510736 |