Tungsten Inert Gas (TIG) adalah sebuah metode pengelasan yang menggabungkan material dengan cara memanaskannya dengan busur las. Elektroda yang digunakan berbahan tungsten dan bersifat non-consumable. Penambahan medan magnet eksternal secara permanen selama proses pengelasan adalah salah satu perkembangan pengelasan TIG. Penambahan medan magnet eskternal pada penelitian ini dilakukan untuk mengetahui pengaruhnya terhadap geometri lasan berupa bentuk busur las, lebar manik las, dan kedalaman penetrasi. Magnet yang digunakan memiliki dua ukuran dan empat belas konfigurasi yang berbeda berdasarkan peletakannya. Masing-masing konfigurasi dilakukan sebanyak tiga kali repetisi pengelasan. Dari hasil uji ANOVA, semua konfigurasi memiliki perbedaan rata-rata yang signifikan secara statistik. Hal ini disebabkan pada tiap konfigurasi memiliki keberagaman garis-garis gaya magnet dan besarnya medan magnet, sehingga akan memengaruhi geometri busur las yang berdampak pada lebar manik dan kedalaman las. Busur las yang telah dimampatkan oleh garis gaya magnet cenderung memiliki area kontak panas yang kecil sehingga panas terpusat, menghasilkan lebar manik las yang sempit dan penetrasi las yang dalam. Konfigurasi yang memiliki peningkatan rasio D/W (depth/width) paling tinggi dari pengelasan non magnet (netral) adalah konfigurasi F Forward untuk tebal magnet 3 mm dan 5 mm.
Tungsten Inert Gas (TIG) is a welding method that combines materials by heating them with a welding arc. The electrodes used are made of tungsten and non-consumable. The addition of a permanent external magnetic field (EMF) during the welding process is one of the developments in TIG welding. The addition of the external magnetic field in this study was carried out to determine its effect on the weld geometry in the form of weld arc shape, weld bead width, and penetration depth variously. The magnets used have two sizes and fourteen different configurations based on their placement. Each configuration is performed three times of welding reps. From the results of the ANOVA test, all configurations have mean differences that are statistically significant. This is because each configuration has a variety of magnetic lines of force and magnetic field magnitude, so it will affect the geometry of the blow arc which has an impact on the weld bead width and the depth penetration of the weld. A weld arc that has been compressed by magnetic lines of force tends to have a small hot contact area so that the heat is concentrated, resulting in a narrow weld bead width and deep weld penetration. The configuration that has the highest increase in D/W (depth / width) ratio from non-magnetic (neutral) welding is the F Forward configuration for 3 mm and 5 mm thick magnets