Krisis ekonomi yang terjadi di masa lalu menimbulkan pertanyaan tentang validitas
Efficient Market Hypothesis dan mendorong berkembangnya model-model yang
dapat memprediksi indeks harga saham. Salah satunya yaitu prediksi
memanfaatkan komponen ekonomi yang diketahui mempengaruhi IHSG dan
memprosesnya dengan teknik machine learning. Support Vector Machine dikenal
memiliki kemampuan untuk menangani data berdimensi tinggi dan memiliki
keunggulan dibandingkan algoritma yang lain. Performa SVM akan dibandingkan
dengan Artificial Neural Network (ANN) dan algoritma klasik Multiple Linear
Regression (MLR). Studi ini diawali mengidentifikasi pengaruh komponen
ekonomi terhadap IHSG mendatang. Hasil penelitian menunjukkan bahwa SVM
memiliki kinerja paling baik dalam memprediksi harga indeks saham keesokan
harinya (t + 1), namun kinerja ANN paling baik untuk memprediksi t + 5, t + 10,
dst.
The economic crisis that occurred in the past raised questions about the validity ofthe Efficient Market Hypothesis and encouraged the development of models thatcan predict the stock price. One of them is prediction utilizing economiccomponents known to affect IDX composite index and processed by machinelearning techniques. Support Vector Machines are known to have the ability tohandle high-dimensional data and have advantages over other algorithms. SVMperformance will be compared to Artificial Neural Networks (ANN) and the classicMultiple Linear Regression (MLR) algorithm. This study begins with identifyingthe influence of economic component on the future IDX composite index. Theresults showed that SVM had the best performance in predicting the next day stockindex prices (t+1), but ANN's performance was better than others for predictingt+5, t+10, and so on.