Pengukuran laju aliran multifase merupakan hal yang krusial dalam industri minyak dan gas. Pengukuran laju aliran menjadi sangat penting untuk optimalisasi produksi dan flow assurance sistem produksi minyak. Multiphase Flow meter (MPFM) merupakan alat yang digunakan untuk melakukan pengukuran laju aliran multifase sehingga memiliki keunggulan dapat melakukan pengukuran dan mendapatkan hasil laju aliran dalam waktu singkat. Semakin berkembangnya kecerdasan buatan, pengukuran dapat juga dilakukan secara virtual. Virtual Flow Metering (VFM) merupakan salah satu cara pengukuran laju aliran multifase dengan menggunakan data sensor yang ada di ESP, dan pengukuran MPFM. Pada penelitian ini telah dirancang model machine learning untuk estimasi laju aliran menggunakan metode super learner dengan base learner XGBoost, AdaBoost, Bagging, Random Forest, dan Extra Trees. Estimasi laju aliran yang didapat dievaluasi dan divalidasi dengan menggunakan MAE, MAPE, R squared, dan cumulative deviation plot. Berdasarkan hasil evaluasi tersebut, model super learner menunjukkan hasil yang lebih baik dibandingkan model base learner yang digunakan, dengan hasil MAE 0,63, MAPE 1,60%, R squared 97,43%, dan maksimal deviasi 12,5%.
Multiphase flow rate measurement is crucial in the oil and gas industry. Flow rate measurement is very important for optimization of production and flow assurance of oil production systems. Multiphase Flow meter (MPFM) is a tool used to measure multiphase flow rates so that it has the advantage of being able to take measurements and get flow rate results in a short time. As artificial intelligence develops, measurement can also be done virtually. Virtual Flow Metering (VFM) is a way of measuring multiphase flow rates using sensor data in the ESP and MPFM measurements. In this study, a machine learning model for flow rate estimation has been designed using the super learner method with the base learner XGBoost, AdaBoost, Bagging, Random Forest, and Extra Trees. The flow rate estimates obtained were evaluated and validated using the MAE, MAPE, R squared, and cumulative deviation plots. Based on the results of this evaluation, the super learner model shows better results than the base learner model used, with MAE 0.63, MAPE 1.60%, R squared 97.43%, and a maximum deviation of 12.5%.