Grup merupakan suatu struktur aljabar berupa himpunan takkosong yang apabila didefinisikan suatu operasi biner harus memenuhi 4 sifat yaitu: tertutup, berlaku aturan asosiatif, terdapat elemen identitas, serta tiap elemen memiliki elemen invers. Graf Cayley merupakan graf yang berupa representasi elemen-elemen suatu grup sebagai simpul-simpul di graf serta keberadaan busur ditentukan oleh suatu subhimpunan pembangkit dari grup yang tidak mengandung elemen identitas grup. Pada penelitian ini dibahas beberapa jenis graf Cayley yang dibentuk dari grup simetri dengan subhimpunan pembangkit berupa transposisi dan reversal, ditunjukkan pula konstruksinya, serta sifat-sifat dasar yang terkait graf Cayley yang dibentuk dengan tujuan untuk memberikan gambaran tentang graf Cayley dari grup simetri.
Group is an algebraic structure which is a non-empty set in which a binary operation is defined. The group and its elements need to have four properties that are closed under the operation, associative, having identity element, and each element has its own inverse. Cayley graph is a graph representing elements of a group as nodes and the existence of edges connecting the nodes is determined by a identity-free generating subset of the group. In this research, some families of Cayley graphs on symmetric group whose generating sets consists of transpositions and reversal are presented. The contructions and basic properties of such graphs are presented to help giving the idea about Cayley graph on symmetric group.