UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Klasifikasi sinyal suara tangisan bayi menggunakan gabungan convolutional dan recurrent neural network = infant cry signal classification using combination of convolutional and recurrent neural network

Tusty Nadia Maghfira; Adila Alfa Krisnadhi, supervisor; T. Basaruddin, supervisor; Wisnu Jatmiko, examiner; Evi Yulianti, examiner; Suryana Setiawan, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2020)

 Abstrak

Menangis merupakan bahasa pertama yang dikuasai oleh bayi yang baru lahir. Tangisan bayi ini menjadi sinyal untuk orang tua atau pengasuh agar memberikan perlindungan dan kenyamanan yang dibutuhkan oleh bayi. Umumnya bayi membutuhkan pertolongan pengasuhnya ketika merasa haus, mengantuk, tidak dapat bersendawa, mengalami masalah perut dan merasa tidak nyaman. Apabila pertolongan tidak segera diberikan maka dapat membahayakan bayi tersebut. Namun terdapat faktor psikologis dan pengetahuan orang tua yang kurang dalam memahami setiap tangisan bayi. Berdasarkan masalah tersebut, studi klasifikasi arti tangisan bayi menjadi salah satu domain yang mulai dikembangkan agar dapat membantu orang tua dan pengasuh dalam memahami bayi. Berbagai metode diusulkan untuk memberikan hasil terbaik namun terdapat tantangan dalam studi ini yaitu sinyal suara tangis bayi yang susah dikenali karakteristiknya dibandingkan suara verbal dewasa. Oleh karena itu, penelitian ini mengusulkan pengembangan metode gabungan dari CNN dan RNN untuk mengatasi tantangan dan permasalahan pada studi pengenalan tangisan bayi. Hasil akurasi terbaik metode usulan CRNN mencapai 87,31%.

Crying is the first communication language of newborns. Infant cries can be considered as a cue that hopefully motivate parents and caregivers to give affection, safety, and protection to their infants. Generally, infant cries can be caused by many different reasons, for example when they feel hungry, sleepy, uncomfortable, want to burp, and have a stomachache. If the caregivers do not give their need immediately, it may get worse and harm their safety. But there are some psychological factors and lack of knowledge in understanding each infant’s cries. Based on these problems, the study of infant cry classification becomes one of the studies that began to be developed in order to help parents and caregivers understand their infants. Various methods have been proposed to provide the best result, but there is a challenge in this study which is infant cries signal is difficult to recognize compared to adult speech. Therefore, this study proposes the development CNN and RNN combination methods to overcome challenges and problems in the study of infant cry classification. We obtain best result of CRNN performance up to 87,31%.

 File Digital: 1

Shelf
 T-Tusty Nadia Maghfiratusty.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-Pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2020
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdcarrier)
Deskripsi Fisik : xiv, 75 pages: illustration; appendix
Naskah Ringkas : 2020
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-Pdf 15-22-78566195 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20516622
Cover