UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Perancangan Program Pengestimasi Probabilitas Kegagalan Penukar Panas Akibat Korosi Seragam Berbasis Deep Neural Network = Development of Deep Neural Network-based User Interface as a Probability of Failure Prediction Software for Uniform Corrosion in Heat Exchanger Inner Shell Caused by Uniform Corrosion

Muthia Hanifa; Jaka Fajar Fatriansyah, supervisor; Azizah Intan Pangesty, examiner; Harry Joni Varia (Fakultas Teknik Universitas Indonesia, 2022)

 Abstrak

Meningkatnya standar keamanan dan ketatnya persaingan antar perusahaan meningkatkan kebutuhan bagi suatu perusahan untuk mengendalikan kegagalan pada peralatan. Inspeksi secara teratur dilakukan sebagai bagian dari rangkaian pemeliharaan dan manajemen integritas peralatan. Dalam merencanakan dan melakukan inspeksi, diperlukan strategi yang tepat agar inspeksi yang dilakukan tepat sasaran dan sesuai dengan kebutuhan. Risk-based inspection merupakan teknik pengambilan keputusan dalam perencanaan pemeliharaan yang berdasar pada risiko. Pada saat ini, penggunaan metode-metode kecerdasan buatan untuk kegiatan penilaian risiko, pemodelan konsekuensi, dan perencanaan pemeliharaan telah dilakukan. Penelitian ini bertujuan untuk mengembangkan suatu program yang memanfaatkan pembelajaran mesin dan kecerdasan buatan untuk melakukan penilaian salah satu komponen risiko yaitu probabilitas kegagalan (Probability of Failure, PoF) pada bagian cangkang dalam alat penukar panas menggunakan deep learning. Model ini dapat membantu operator yang bekerja di bidang minyak dan gas untuk menentukan tingkatan risiko sehingga inspeksi dapat dilakukan dengan lebih efisien dan terarah. Penelitian ini menghasilkan sebuah program dan disain program pembelajaran mesin berbasis deep learning yang digunakan untuk memprediksi risiko kegagalan akibat korosi seragam pada peralatan sisi dalam cangkang penukar panas cangkang dan buluh (shell-and-tube heat exchanger) berdasarkan standar API 581 dengan akurasi sebesar 89% yang didapatkan dengan parameter-parameter diantaranya learning rate sebesar 0.001, epoch sebesar 150, random state sebesar 60, tiga hidden layer, dan test size sebesar 0.2.

Increasing regulations and safety standards along with competition among companies increase the need for a company to control and predict failure on equipments. Planned inspections are carried out as a part of equipments’ maintenance and integrity management. Appropriate strategies are needed in planning and performing inspections so that the inspections are performed in an efficient manner according to the equipments’ needs. Risk-based inspection is a decision-making technique in maintenance planning which is based on the risk of each equipment. In recent years, incorporation of artificial intelligence methods for risk assessment, consequence modelling, and maintenance planning has been carried out. This research aims to develop a program which utilizes machine learning and artificial intelligence to perform assessment on one of the components of risk, namely the Probability of Failure (PoF), of a shell-and-tube heat exchanger’s inner shell component by using deep learning methods. This model may help operators working in oil and gas field to determine risk levels so that inspections can be done efficiently. This research produced a deep learning-based machine learning program and program design used to predict the risk of failure caused by uniform corrosion on the inner shell component in shell-and-tube heat exchangers based on API RBI 581 standards, yielding accuracy of 89% which is obtained using the following parameters; a learning rate of 0.001, an epoch of 150, random state of 60, three hidden layers, and a test size of 0.2.

Keywords: Inspection, Risk-Based Inspection, deep learning, heat exchanger, uniform corrosion.

 File Digital: 1

Shelf
 S-Muthia Hanifa.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xii, 63 pages : illustration ; appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-22-06900373 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20518590
Cover