ABSTRAK: Iridologi adalah studi tentang pola dan warna pada iris mata untuk menentukan informasi tentang kesehatan pasien secara keseluruhan. Salah satu pola yang dapat dilihat adalah Lymphatic Rosary yang terlihat seperti bintik – bintik kecil berwarna putih seperti awan yang mengililingi iris mata membentuk menyerupai untaian mutiara atau rosario. Lymphatic Rosary mengindikasikan adanya penyumbatan pada saluran limfa, yang dapat menyebabkan daya tahan tubuh terhadap stress dan penyakit melemah, menjadi rentan terhadap penyakit. Telah banyak penilitian yang dilakukan menggunakan Deep Learning ataupun Machine Learning terkait Iridologi untuk melakukan pengenalan pada pola dan warna pada iris mata secara otomatis untuk mendeteksi berbagai penyakit, seperti diabetes dan kolestrol yang tinggi. Tetapi belum ada penelitian yang mengaplikasikan Deep Learning ataupun Machine Learning untuk melakukan pengenalan otomatis pada Lymphatic Rosary. Penelitian ini akan mengevaluasi performa model Deep Learning dalam melakukan pengenalan otomatis pada Lymphatic Rosary untuk melakukan klasifikasi pada gambar mata normal dan gambar mata dengan Lymphatic Rosary menggunakan algoritma SVM, KNN dan CNN. Dari algoritma yang diuji, algoritma CNN tidak berhasil dalam mengklasifikasikan gambar mata normal dengan gambar mata dengan Lymphatic Rosary. Hasil dari algoritma SVM mendapatkan tingkat akurasi yang paling tinggi, sampai 98,62%.
Abstract : Iridology is the study of the pattern and color of the iris of the eyes to determine information about the patient's overall health. One of the patterns that can be seen is the Lymphatic Rosary which looks like small white spots like clouds that surround the irises to form like a string of pearls or a rosary. Lymphatic Rosary is an obstruction in the lymph channels, which can cause the body's resistance to stress and disease to weaken, making it susceptible to disease. Many studies have been carried out using Deep Learning or Machine Learning related to Iridology to automatically recognize patterns and colors in the iris to detect various disease, such as diabetes and high cholesterol. But there is no research that applies Deep Learning or Machine Learning to perform automatic recognition of the Lymphatic Rosary. This study will analyze the performance of the Deep Learning model in performing automatic recognition on the Lymphatic Rosary to classify images of normal eyes and images of eyes with the Lymphatic Rosary using the SVM, KNN and CNN algorithms. Of the algorithms tested, the CNN algorithm was not successful in classifying normal eye images with eye images with the Lymphatic Rosary. The results of the SVM algorithm get the highest level of accuracy, up to 98.62%