UI - Skripsi Membership :: Back

UI - Skripsi Membership :: Back

Pengembangan Sistem Penilaian Esai Otomatis (SIMPLE-O) untuk penilaian esai bahasa jepang dengan menggunakan hybrid CNN-Bidirectional LSTM dan Manhattan Distance = Development of Automated Essay Grading System (SIMPLE-O) for Japanese essay exam with hybrid deep learning CNN-Bidirectional LSTM and Manhattan Distance

Nadhifa Khalisha Anandra; Anak Agung Putri Ratna, supervisor; Mia Rizkinia, examiner; Prima Dewi Purnamasari, examiner (Fakultas Teknik Universitas Indonesia, 2022)

 Abstract

Skripsi ini membahas mengenai pengembangan Sistem Penilaian Esai Otomatis (SIMPLE-O) yang dirancang dengan menggunakan hybrid CNN dan Bi-LSTM dan Manhattan Distance untuk penilaian esai Bahasa Jepang. Sistem dirancang dengan menggunakan bahasa pemrograman Python. Sistem melalui tahapan pre-processing, feature extraction dan word embedding yang dilanjutkan dengan proses deep learning serta pengukuran dengan menggunakan manhattan distance. Hasil akhir dari sistem dibandingkan dengan penilaian manual oleh dosen. Model yang paling stabil dan terbaik ditraining dengan menggunakan hyperparameter dengan kernel sizes bernilai 5, jumlah filter atau output CNN sebesar 64, pool size sebesar 4, Bidirectional LSTM units 50, batch size sebesar 64. Model deep learning ditraining dengan menggunakan optimizer Adam dengan learning rate 0,001 , epoch sebanyak 25 dan menggunakan regularizer L1 sebesar 0,01. Rata-rata error yang diperoleh adalah 29%
This thesis discusses the development of an Automatic Essay Grading System (SIMPLE-O) designed using hybrid CNN and Bidirectional LSTM and Manhattan Distance for Japanese essay grading. The system is designed using Python programming language. The system goes through the stages of pre-processing, feature extraction and word embedding followed by deep learning process and measurement using Manhattan Distance. The final result of the system is compared with manual assessment by lecturers. The most stable and best model is trained using hyperparameters with kernel sizes of 5, number of filters or CNN outputs of 64, pool size of 4, Bidirectional LSTM units of 50, batch size of 64. The deep learning model is trained using the Adam optimizer with a learning rate of 0.001, epoch of 25 and using an L1 regularizer of 0.01. The average error obtained is 29%.

 Digital Files: 1

Shelf

 Metadata

Collection Type : UI - Skripsi Membership
Call Number : S-pdf
Main entry-Personal name :
Additional entry-Personal name :
Study Program :
Subject :
Publishing : Depok: Fakultas Teknik Universitas Indonesia, 2022
Cataloguing Source LIb ind rda
Content Type text
Media Type computer
Carrier Type online resource (rdacarries)
Physical Description xix, 127 pages : illustration + appendix
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI
  • Availability
  • Review
  • Cover
Call Number Barcode Number Availability
S-pdf 14-22-94119285 TERSEDIA
Review:
No review available for this collection: 20518914
Cover