UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Estimasi produktivitas tanaman kelapa sawit menggunakan Citra Sentinel-2 di Kebun Cikasungka PTPN VIII, Bogor, Jawa Barat = Estimation of palm oil plant productivity using Sentinel-2 Imagery at Cikasungka Plantation PTPN VIII, Bogor, West Java

Afifah Nur Rahmasari; Supriatna, supervisor; Andry Rustanto, supervisor; Muhammad Dimyati, examiner; Revi Hernina, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Tanaman kelapa sawit merupakan salah satu komoditas yang tumbuh baik di Indonesia dengan nilai komersial tinggi yang membuat permintaan hasil olahan minyak tanaman kelapa sawit semakin meningkat, maka perlu adanya data dan teknologi untuk mengestimasi produktivitas tanaman kelapa sawit secara lebih efisien. Salah satunya dengan penginderaan jauh menggunakan citra Sentinel-2. Penelitian ini bertujuan untuk menganalisis tingkat akurasi algoritma NDVI, ARVI, dan SAVI, variasi spasial serta temporal, dan hubungan kondisi fisik wilayah terhadap estimasi produktivitas tanaman kelapa sawit di Kebun Cikasungka. Produktivitas tanaman kelapa sawit lapangan diregresikan dengan indeks vegetasi dan umur tanaman untuk menghasilkan pemodelan. Berdasarkan pemodelan dengan ketiga algoritma, akurasi model algoritma ARVI memiliki nilai RMSE lebih rendah, yaitu sebesar 421. Estimasi produktivitas tanaman kelapa sawit Kebun Cikasungka bervariasi di tiap bloknya dan tertinggi pada umur tanaman dewasa. Pada tahun 2022 estimasi produktivitas tanaman kelapa sawit bulanan mengalami penurunan dibandingkan tahun 2019 karena adanya alihfungsi lahan. Kondisi fisik wilayah penelitian didominasi oleh lereng curam, jenis tanah Kambisol, dan rata-rata curah hujan bulanan yang tinggi dengan estimasi produktivitas tanaman kelapa sawit sebesar 35.061 Kg/Ha/Bulan menggunakan algortima NDVI dan SAVI serta dengan algoritma ARVI sebesar 35.431 Kg/Ha/Bulan.

Palm oil is one of the commodities that is growing well in Indonesia with a high commercial value which makes the demand for processed palm oil products increase, it is necessary to have data and technology to estimate the productivity of oil palm plants more efficiently. One of them is remote sensing using Sentinel-2 imagery. This study aims to analyze the accuracy of the NDVI, ARVI, and SAVI, spatial and temporal variations, and the relationship of the physical condition area to the estimated productivity of oil palm plants at the Cikasungka Plantation. Oil palm productivity was regressed by vegetation index and plant age to generate a model. Based on modeling, the accuracy of the ARVI model has a lower RMSE value. The estimated productivity of oil palm plants varies in each block with the highest at mature plant age. In 2022, it is estimated that the monthly productivity of oil palm plants will decrease compared to 2019 due to the conversion of land into residential areas. The physical condition reseach area is dominated by steep slopes, Kambisol soil type, and high average monthly rainfall with an estimated productivity of 35.061 Kg/Ha/Month using the NDVI and SAVI and the ARVI of 35.431 Kg /Ha/Month.

 File Digital: 1

Shelf
 S-Afifah Nur Rahmasari.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text ;text ;text
Tipe Media : unmediated ; computer ;unmediated ; computer ;unmediated ; computer
Tipe Carrier : volume ; online resource ;volume ; online resource ;volume ; online resource
Deskripsi Fisik : xviii, 98 pages : illustrations ; 28 cm. + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-08882324 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20520103
Cover