UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Rancang Model Prediksi Potensi Pertumbuhan Awan Cumulonimbus (CB) Berbasis Artificial Neural Network (ANN) dengan Optimasi Grey Wolf Optimizer (GWO) Menggunakan Data Radiosonde = Design a Prediction Model of Cumulonimbus Cloud (CB) Growth Potential Based on Artificial Neural Network (ANN) with Gray Wolf Optimizer (GWO) Optimization Using Radiosonde Data

Abdul Akbar; Prawito Prajitno, supervisor; Deni Septiadi, supervisor; Sastra Kusuma Wijaya, examiner; Santoso Soekirno, examiner; Suko Prayitno Adi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Keberadaan Cumulonimbus dapat menyebabkan hujan lebat, tornado, badai petir dan peristiwa ekstrem lainnya. Pengamatan Radiosonde telah digunakan untuk memprediksi potensi keberadaan awan CB dalam periode prakiraan cuaca jangka pendek dengan menggunakan pendekatan machine learning. Salah satu metode machine learning yang populer dan handal digunakan untuk prediksi potensi pertumbuhan awan CB adalah Artificial Neural Network (ANN). Namun, ANN masih sensitif terhadap inisialisasi nilai awal pada parameter weight dan bias. Metode yang terbukti paling handal untuk mengatasi masalah tersebut adalah Grey Wolf Optimizer (GWO). Oleh sebab itu, studi ini menggunakan GWO untuk mengoptimalkan parameter weight dan bias pada ANN berdasarkan kinerja MSE di setiap iterasi sehingga dapat meningkatkan kinerja ANN dalam memprediksi keberadaan awan CB. Hasil studi menunjukkan bahwa GWO memberikan peningkatan kinerja ANN dengan rata rata peningkatan akurasiakurasi sebesar 14,88 %. Akurasi terbaik didapatkan dengan nilai 89.6% dengan menggunakan 5 input indeks Radiosonde SI, LI, TT, CAPE, SWEAT pada epoch 250, dengan nilai MSE 0.071, serta nilai koefisien korelasinya sebesar 0.86

The presence of Cumulonimbus can cause heavy rain, tornadoes, thunderstorms and other extreme events. Radiosonde observations have been used to predict the potential presence of CB clouds in the short-term weather forecast period using a machine learning approach. One of the popular and reliable machine learning methods used to predict the potential growth of CB clouds is Artificial Neural Network (ANN). However, ANN is still sensitive to initialization of initial values ​​in weight and bias parameters. The most reliable proven method to solve this problem is the Gray Wolf Optimizer (GWO). Therefore, this study uses GWO to optimize weight and bias parameters on ANN based on MSE performance in each iteration so as to improve ANN performance in predicting the presence of CB clouds. The results of the study show that GWO provides an increase in ANN performance with an average increase in accuracy of 14.88%. The best accuracy was obtained with a value of 89.6% using 5 inputs Radiosonde SI, LI, TT, CAPE, SWEAT at epoch 250, with an MSE value of 0.071, and the correlation coefficient value of 0.86

 File Digital: 1

Shelf
 T-Abdul Akbar.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 97 pages : illustrations + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-22-72137243 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20520163
Cover