UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Rancang Bangun Sistem Pakar Kualitas Stasiun Pengamatan Gempabumi Berbasis Multiple Input Convolutional Neural Network = Development of expert System for Earthquake Observation Stations Quality Based on Multiple Input Convolutional Neural Network

Arif Rachman Hakim; Adhi Harmoko Saputro, supervisor; Supriyanto Rohadi, supervisor; Martarizal, examiner; Suko Prayitno Adi, examiner; Mohd Asyraf Zulkifley, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Analisis kualitas data stasiun pengamatan gempabumi menjadi sangat penting sebagai kontrol kualitas atau pengendali mutu. Saat ini penentuan kualitas stasiun pengamatan gempabumi dilakukan secara manual dengan menganalisis parameter bentuk spektrum noise atau bentuk spektrum power spectral density (PSD) terhadap bentuk noise model pada suatu stasiun dengan rentang waktu 30 hari oleh seorang pakar. Pada penelitian ini diusulkan pendekatan metode baru berbasis deep learning untuk mengenali kualitas stasiun pengamatan gempabumi, yang didasarkan dari kemampuan pakar dalam menganalisis kualitas data stasiun pengamatan gempabumi. Data yang digunakan ialah waveform rekaman seismometer 3 komponen (North-South, East-West, Z-vertical) pada jaringan stasiun pengamatan gempabumi Indonesia Tsunami Early Warning System (InaTEWS). Model arsitektur dalam rancang bangun sistem pakar ini menggunakan Multiple Input Convolutional Neural Network (MICNN), dalam model MICNN ini terdapat 3 blok Convolutional Neural Network, yang berfungsi sebagai ekstraksi fitur tiap komponen waveform rekaman seismometer, hasil ekstraksi fitur tiap blok CNN kemudian digabungkan untuk dilakukan proses klasifikasi pada model arsitektur MICNN. Terdapat 3 kelas klasifikasi yang digunakan pada penelitian ini, yaitu Classified, Usable dan Unusable. Pengujian terhadap model MICNN ini menggunakan rekaman waveform seismometer dari 411 stasiun InaTEWS dengan panjang rekaman 30 hari selama 12 bulan, dan hasil pengujian model MICNN pada penelitian ini memiliki akurasi sebesar 99,4%

Analysis of the quality of the earthquake observation station data becomes very important as quality control. Currently, the determination of the quality of earthquake observation stations is done manually by analyzing the parameters of the shape of the noise spectrum or the form of the power spectral density (PSD) spectrum against the shape of the noise model at a station with a period of 30 days by an expert. This study proposes a new method approach based on deep learning to identify the quality of earthquake observation stations, which is based on the ability of experts to analyze the quality of earthquake observation station data. The data is a 3-component seismometer recording waveform (North-South, East-West, Z-vertical) on the Indonesian Tsunami Early Warning System (InaTEWS) earthquake observation station network. The architectural model in the design of this expert system uses Multiple Input Convolutional Neural Network (MICNN). In this MICNN model, 3 Convolutional Neural Network blocks function as feature extraction for each component of the seismometer recording waveform. Classification process on the MICNN architectural model. There are three classification classes used in this study, namely Classified, Usable and Unusable. The test of the MICNN model uses waveform seismometer recordings from 411 InaTEWS stations with a recording length of 30 days for 12 months, and the results of testing the MICNN model in this study have an accuracy of 99,4%.

 File Digital: 1

Shelf
 T-Arif Rachman Hakim.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 56 pages ; Illustrations + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-22-73451893 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20520548
Cover