Memprediksi niat kunjungan kembali memainkan peran penting dalam kebangkitan kembali waktu pandemi yang akan menguntungkan keunggulan kompetitif jangka pendek dan jangka panjang. Penelitian ini mengkaji faktor-faktor penentu niat berkunjung kembali dari analisis sentimen berbasis aspek dan pembelajaran mesin. Pendekatan big data diterapkan pada empat set data atraksi, hotel bintang 4&5, hotel bintang 3, dan motel dengan 49.399 ulasan dari TripAdvisor. Kami menerapkan metode pemodelan topik untuk mengekstrak aspek dan atribut, menghasilkan 10 aspek untuk kategorisasi hotel 4&5 dan kumpulan data atraksi, 6 aspek pada kumpulan data hotel bintang 3 dan Motel. Hasil analisis sentimen menunjukkan bahwa sentimen wisatawan secara positif dan negatif juga mempengaruhi kemungkinan niat berkunjung kembali. Peneliti menerapkan metode Logistic Regression, Random Forest Classifier, Decision Tree, k-NN, dan XGBoost untuk memprediksi niat berkunjung kembali yang menghasilkan tiga topik utama yang mendominasi probabilitas niat berkunjung kembali untuk masing-masing dataset. Aspek Properti pada hotel bintang 4&5 dan hotel bintang 3 mengindikasikan memiliki kemungkinan tinggi untuk niat berkunjung kembali. Sedangkan aspek Motels pada Atmosfir, Aktivitas Wisata, dan Durasi cenderung memiliki probabilitas niat berkunjung kembali. Aspek atraksi pada Harga, Layanan, Suasana meningkatkan kemungkinan niat berkunjung kembali. Studi ini berkontribusi pada pemanfaatan data besar dan pembelajaran mesin di industri pariwisata dan perhotelan dengan berfokus pada strategi inovatif sebagai pengurangan biaya untuk mempertahankan niat kunjungan kembali di kebangkitan kembali dari pandemi.
Predicting revisit intention plays a crucial role in the reawakening time of pandemic that will benefit short-term and long-term competitive advantage. This study examines the determiner factors of revisit intention from aspect-based sentiment analysis and machine learning. A big data approach was applied on four datasets of attractions, hotel 4&5 stars, hotel 3 stars, and motels with 49,399 reviews from TripAdvisor. We applied a topic modeling method to extract aspects and attributes, resulting in 10 aspects for hotel 4&5 categorization and attractions dataset, 6 aspects on hotel 3 stars and Motels dataset. Results on sentiment analysis show that tourists’ sentiment in positives and negatives also affect probability of revisit intention. Researchers applied methods of Logistic Regression, Random Forest Classifier, Decision Tree, k-NN, andXGBoost to predict revisit intention resulting in three main topics that have dominated probability on revisit intention for each dataset respectively. Aspect Properties on hotels 4&5 stars and hotel 3 stars indicate to have a high probability of revisit intention. Meanwhile, Motels' aspects on Atmosphere, Tourist Activities, and Duration tend to have a probability of revisit intention. Attraction’s aspects on Price, Services, Ambience increase probability of revisit intention. This study contributes to the utilization of big data and machine learning in tourism and hospitality industry by focusing on an innovative strategy as cost reduction to maintain revisit intention in the reawakening from pandemic.