Retinopati diabetik adalah kelainan vaskular retina yang disebabkan oleh diabetes jangka panjang. Deteksi dini retinopati diabetik pada pasien diabetes diperlukan karena tidak ada gejala yang terlihat selama tahap awal penyakit. Para peneliti mengembangkan metode berbasis komputer untuk membantu dokter dalam proses deteksi dini. Dokter dapat menggunakan output dari metode tersebut sebagai pertimbangan dalam mediagnosis tipe retinopati diabetik yang diderita pasien. Salah satu metode yang populer adalah deep learning. Pada penelitian ini, dibangun gabungan dua algoritma deep learning, yaitu Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM) untuk deteksi retinopati diabetik dengan output berupa caption yang menjelaskan kondisi yang ada pada citra fundus pasien. CNN digunakan untuk mengekstraksi fitur lesi retinopati diabetik pada citra fundus, dan LSTM digunakan untuk membuat caption berdasarkan fitur lesi tersebut. Penelitian ini menggunakan empat model CNN, yakni AlexNet, pre-trained AlexNet, GoogleNet, dan pre-trained GoogleNet. Simulasi gabungan algoritma CNN-LSTM dilakukan dengan proporsi data yang berbeda menggunakan data set dari Rumah Sakit Cipto Mangunkusumo. Hasil simulasi menunjukkan bahwa gabungan algortima CNN-LSTM dapat mendeteksi fitur lesi dan membuat caption dengan rata-rata kinerja akurasi tertinggi sebesar 91.69% untuk model pre-trained GoogleNet-LSTM dan proporsi data 80% data training dan 20% data testing.
Diabetic retinopathy is a retinal vascular disorder caused by long-term diabetes. Early diabetic retinopathy detection in diabetes patients is needed because no symptoms can be seen during the early stage of disease. The researchers developed a computer-based method to assist ophthalmologists in the early detection process. Ophthalmologists can use the output of the method as a consideration in diagnosing the type of diabetic retinopathy. One of the popular methods is deep learning. In this study, a combination of two deep learning algorithms, namely Convolutional Neural Network (CNN)-Long Short-Term Memory (LSTM), was constructed for diabetic retinopathy detection with the output in the form of a caption that explains the condition present in the patient’s fundus images. CNN is used to extract features of diabetic retinopathy lesions on fundus images, and LSTM is used to generate a caption based on those lesion features. This study used four CNN models that are AlexNet, pre-trained AlexNet, GoogleNet, and pre-trained GoogleNet. Simulation of a combined CNN-LSTM algorithm has been done with the different proportions of data using a data set from Cipto Mangunkusumo National General Hospital. The simulation results show that a combined CNN-LSTM algorithm can detect lesion features and generate caption with the highest average performance accuracy of 91.69% for pre-trained GoogleNet-LSTM and the proportion 80% training data and 20% testing data.