UI - Skripsi Membership :: Back

UI - Skripsi Membership :: Back

Analisis Kinerja BERT untuk lifelong learning pada Analisis Sentimen Berbahasa Indonesia = Performance Analysis of BERT Model for Lifelong Learning on Sentiment Analysis in Indonesian Language

Muhammad Adani Osmardifa; Hendri Murfi, supervisor; Gianinna Ardaneswari, supervisor; Sarini Abdullah, examiner; Nora Hariadi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021)

 Abstract

Tingginya tingkat penggunaan media sosial, membuat media sosial sering digunakan untuk menjadi salah satu sumber data pada banyak penelitian. Salah satu penelitian yang paling sering digunakan adalah analisis sentimen. Analisis sentimen adalah bidang studi yang menganalisis pendapat, sentimen, evaluasi, penilaian, sikap, dan emosi orang terhadap entitas seperti produk, layanan, organisasi, individu, isu, peristiwa, topik, dan atributnya. Pada penelitian ini, penulis menggunakan model Bidirectional Encoder Representation from Transformers (BERT) pada permasalahan analisis sentimen. Pada penelitian ini model BERT juga dibandingkan dengan dua model dasar lainnya, yaitu Convolutional Neural Network (CNN) dan Long-Short Term Memory (LSTM). Agar model dapat belajar secara berkelanjutan dari beberapa domain data, model tersebut juga diimplementasikan pada lifelong learning. Hasilnya, BERT mengalami penurunan akurasi sebanyak 8,21% dari 89,17% menjadi 80,96% pada uji loss of knowledge dan mengalami kenaikan sebesar 6,67% dari 82,93% menjadi 89,60% pada uji transfer of knowledge.

High level usage of social media makes this platform frequently used as one of the sources for educational studies such as sentiment analysis. Sentiment analysis is a field of study that analyzes people's opinions, sentiments, evaluations, judgments, attitudes, and emotions towards entities such as products, services, organizations, individuals, issues, events, topics, and their attributes. In this study, author will use Bidirectional Encoder Representation from Transformers (BERT) model for sentiment analysis problem. BERT will also be compared with two others basic model which is Convolutional Neural Network (CNN) and Long-Short Term Memory (LSTM). In order for the model to learn continuously from several data domains, lifelong learning is also implemented in the model. As a result, BERT accuracy decreased 8.21% from 89,17% to 80,96% in loss of knowledge test and increased 6.67% from 82,93% to 89,60% in transfer of knowledge test.

 Digital Files: 1

Shelf
 S-Muhammad Adani Osmardifa.pdf :: Download

LOGIN required

 Metadata

Collection Type : UI - Skripsi Membership
Call Number : S-pdf
Main entry-Personal name :
Additional entry-Personal name :
Additional entry-Corporate name :
Study Program :
Subject :
Publishing : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2021
Cataloguing Source LibUI ind rda
Content Type text
Media Type computer
Carrier Type online resource
Physical Description xiii, 53 pages : illustration + appendix
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI
  • Availability
  • Review
  • Cover
Call Number Barcode Number Availability
S-pdf 14-23-73560811 TERSEDIA
Review:
No review available for this collection: 20524856
Cover