UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Prediksi Permintaan Berbasis Machine Learning untuk Penentuan Order Quantity Studi Kasus: Coffee Shop = Demand Forecasting Based on Machine Learning to Determine Order Quantity Study Case: Coffee Shop

Giovanni Abel Christian; Mia Rizkinia, supervisor; Arian Dhini, examiner; I Gde Dharma Nugraha, examiner; Yohan Suryanto, examiner (Fakultas Teknik Universitas Indonesia, 2021)

 Abstrak

Warung kopi atau coffee shop kian mengalami peningkatan dalam tren dan permintaan di Indonesia. Pandemi Covid-19 membuat pemberlakuan pembatasan sosial yang membuat penjualan dan permintaan menjadi susah diprediksi sehingga pengelolaan stok biji kopi menjadi masalah. Melakukan peprediksi menggunakan model machine learning dapat menjadi solusi untuk mengatasi masalah tersebut. Data yang digunakan adalah permintaan biji kopi yang didapatkan dari sistem POS (Point-of-Sales). Untuk membuat performa model yang lebih baik, ditambahkan beberapa variabel eksternal seperti cuaca, hari raya dan pembatasan sosial. Model prediksi yang digunakan adalah Multiple Linear Regression (MLR), Decision Tree (DT), Support Vector Regressor (SVR) dan Neural Network (NN). Hasil pelatihan model menunjukan model-model yang menggunakan semua variabel menghasilkan hasil prediksi yang lebih baik dibandingkan dengan model-model dengan menggunakan hanya variabel tanggal. Model DT menunjukan hasil prediksi yang terbaik berdasarkan pola prediksi dan error yang dihasilkan. Implementasi hasil prediksi dapat diterapkan dengan perhitungan Reorder Point (ROP) yang ditampilkan dalam dashboard, Expected Value Analysis untuk penentuan tingkat pemesanan, danpencatatan pemesanan bahan baku untuk perkiraan biaya yang dibutuhkan dihitung menggunakan metode FIFO (First in First Out).

The trend of Coffee shops in Indonesia keeps increasing as well as its. COVID-19 pandemic has caused the establishment of social restriction which creates hindrance in predicting the sales and demand, as a result disrupts the coffee beans inventory management. Forecasting using machine learning models could offer a solution to overcome those problems. The data used in this research is the coffee beans demand from POS (Point-of-Sales) system. Various external variables such as weather, event and social restrictions are added to increase model performance. Predictions models used are Multiple Linear Regression (MLR), Decision Tree (DT), Support Vector Regressor (SVR) and Neural Network (NN). The result of model training shows that models that use all variables produce better prediction than models that use date variables only. DT model generates the best prediction based on its pattern and error measurement. The prediction result from the chosen model is implemented to calculate the Reorder Point (ROP)  and visualized using  dashboard, Expected Value Analysis to determine the stock level estimation. Subsequently, material stock register calculated using FIFO (First in First Out). 

 File Digital: 1

Shelf
 T-Giovanni Abel Christian.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2021
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdcarrier)
Deskripsi Fisik : xv, 74 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-23-93358957 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20525616
Cover