UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Restorasi Citra Berkabut Luar Ruang Menggunakan Dark Channel Prior dan Two Peak Channel Prior = Outdoor Image Dehazing with Dark Channel Prior and Two Peak Channel Prior

Aziz Fikri Hudaya; Laksmita Rahadianti, supervisor; Aruni Yasmin Azizah, supervisor; Dina Chahyati, examiner; Suryana Setiawan, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2021)

 Abstrak

Citra berkabut terjadi jika cahaya yang diterima oleh media optik dihamburkan dengan media yang keruh, seperti asap dan tetesan air. Citra berkabut dapat direstorasi menjadi citra tanpa kabut dengan proses image dehazing. Salah satu metode untuk melakukan image dehazing adalah statistical prior. Statistical prior digunakan ketika informasi yang diketahui hanyalah citra berkabut, untuk mengestimasi parameter yang tidak diketahui, seperti airlight dan transmisi. Pada penelitian ini penulis menggunakan dua metode statistical prior, yaitu Dark Channel Prior dan Two Peak Channel Prior. Untuk mendapatkan hasil terbaik, penulis melakukan optimasi parameter pada kedua metode yang digunakan. Untuk mendapatkan kualitas hasil image dehazing terbaik, penulis merancang sebuah kerangka kerja (framework usulan dari modifikasi metode Dark Channel Prior yang melibatkan pemisahan daerah langit dan non-langit dan optimasi parameter. Performa metode diuji dengan menggunakan metrik root mean square error (RMSE) dan structural similarity index measure (SSIM). Didapatkan hasil dimana metode usulan mendapatkan hasil evaluasi terbaik, dengan RMSE sebesar 0.063 dan SSIM sebesar 0.942 Untuk dataset SOTS Outdoor. Sementara untuk dataset O-Haze, metode usulan mendapatkan hasil evaluasi terbaik juga dengan RMSE sebesar 0.147 dan SSIM sebesar 0.811.

Hazy images occur when the light received by the optical device is scattered by turbid media such as smoke and water droplets. Hazy images can be restored to its clear version by the image dehazing process. It is possible to perform image dehazing using statistical priors. Statistical priors are used when the only known information is the hazy image itself, to estimate the unknown parameters. In this study, the author used two statistical priors, namely Dark Channel Prior and Two Peak Channel Prior. To obtain the best possible results, the author attempted to optimize the parameters of the used methods. Furthermore, to obtain the best possible quality of image dehazing results, the Author proposed a framework using a modification of the Dark Channel Prior method, which involved separating the sky and non-sky areas and parameter optimization. The method performance was evaluated using the root mean square error (RMSE) and structural similarity index measure (SSIM). The results obtained show that the proposed method is able to get the best evaluation results, with an RMSE of 0.063 and SSIM of 0.942 for SOTS Outdoor dataset. For the O-Haze dataset, the proposed method also gets the best evaluation results with an RMSE of 0.147 and an SSIM of 0.811.

 File Digital: 1

Shelf
 S-Aziz Fikri Hudaya.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2021
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdcarrier)
Deskripsi Fisik : xv, 39 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-27507588 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20527392
Cover