UI - Tugas Akhir :: Kembali

UI - Tugas Akhir :: Kembali

Analisis sentimen dan pemodelan topik ulasan pengguna aplikasi mobile: studi kasus aplikasi android Traveloka = Sentiment analysis and topic modelling of user reviews on mobile applications: case study Traveloka's android app

M. Shofwan Amrullah; Indra Budi, supervisor; Rahmad Mahendra, supervisor; Amril Syalim, examiner; Putu Wuri Handayani, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2022)

 Abstrak

PT Traveloka Indonesia adalah salah satu OTA (Agent) terbesar se-Asia Tenggara, yang mengedepankan kepuasan pelanggan sebagai keunggulan kompetitif perusahaan. Namun saat ini, terdapat penurunan tingkat kepuasan pelanggan, dan juga terjadinya penurunan jumlah pengguna aktif aplikasi. Oleh karena itu, perlu dilakukan langkah-langkah seperti melakukan inovasi atau perbaikan fitur agar dapat meningkatkan kepuasan pelanggan dan juga menaikkan kembali jumlah pengguna aktif aplikasi. Pada aplikasi Android Traveloka, jumlah ulasan mencapai 700 ribu dalam kurun waktu 2 tahun terakhir, di mana platform Android merupakan platform yang mempunyai jumlah pengguna aplikasi Traveloka terbesar dibandingkan platform lainnya. Dengan banyaknya jumlah ulasan tersebut, perusahaan masih memilah-milah ulasan negatif dan positif serta mencari topik-topik yang paling sering dibicarakan secara manual, sehingga membutuhkan waktu yang sangat lama dan cenderung tidak akurat. Hal ini menyebabkan keluhan ataupun ulasan tersebut belum secara efektif dijadikan dasar untuk membuat inovasi baru ataupun untuk memperbaiki fitur yang ada, sehingga belum memberikan kontribusi terhadap proses peningkatan kepuasan pelanggan dan peningkatan jumlah pengguna aktif aplikasi. Oleh karena itu, pada penelitian ini diusulkan suatu model yang dapat mengategorikan sentimen serta melakukan pengelompokan topik-topik yang sering muncul dari seluruh ulasan pelanggan. Algoritma Bayes, Support Vector Machine Logistic Regression digunakan untuk membuat model yang dapat mengklasifikasi sentimen dari tiap ulasan ke dalam kelas positif ataupun kelas negatif. Selain itu, dilakukan proses pemodelan topik pada tiap kelas tersebut menggunakan algoritma Latent Dirichlet Allocation (LDA). Hasil penelitian menunjukkan bahwa algoritma terbaik untuk melakukan klasifikasi adalah SVM, dengan nilai f1-score rata-rata 0.98318, dan jumlah topik yang optimal untuk sentimen positif adalah 16 dan jumlah topik yang optimal untuk sentimen negatif adalah 12. Pada kelas sentimen positif, terdapat topik-topik yang menyinggung kelengkapan fitur serta banyaknya diskon dan promo, sedangkan pada kelas sentimen negatif, terdapat topik yang berhubungan dengan fitur refund dan produk paylater. Dengan diimplementasikannya model tersebut, diharapkan PT Traveloka dapat memilah-milah ulasan ke dalam kelas sentimen positif dan negatif dengan cepat dan akurat, serta dapat dengan cepat mengetahui daftar topik-topik yang paling banyak dibicarakan oleh penggunanya.

PT Traveloka Indonesia is one of the biggest Online Travel Agents in Southeast Asia, which prioritizes customer satisfaction as the company's competitive advantage. However, there is currently a decrease in customer satisfaction scores and numbers of active users. Therefore, it is necessary to take steps such as innovating or improving features to restore customer satisfaction scores and active users. On the Traveloka Android application, the number of reviews reached 700 thousand in the last two years, where the Android platform is the platform that has the most significant number of Traveloka users compared to other platforms. Nonetheless, Traveloka is still sorting through negative and positive reviews manually and manually searching for the most discussed topics, so it takes a long time and tends to be inaccurate. This lengthy process made customer reviews are yet to be effectively used for formulating innovations or finding existing features to improve, so they are yet to help increase customer satisfaction and the number of active users of the application. Therefore, this research proposes a model to categorize sentiments and group topics that often arise from all customer reviews. The Naïve Bayes, Support Vector Machine (SVM), and Logistic Regression algorithm are used to create a model that can classify the sentiment of each review into a positive class or a negative class. In addition, the topic modeling process for each class is carried out using the Latent Dirichlet Allocation (LDA) algorithm. The results show that the best algorithm for classifying is SVM, with an average f1-score of 0.98318, and the optimal number of topics for positive sentiment is 16, and the optimal number of topics for negative sentiment is 12. There are topics about the completeness of features and the number of discounts and promos in the positive sentiment class, while in the negative sentiment class, there are topics related to the refund feature and pay later product. With the implementation of this model, it is hoped that PT Traveloka can sort reviews into positive and negative sentiment classes quickly and accurately and quickly find out the list of topics that users most discuss.

 File Digital: 1

Shelf
 TA-M. Shofwan Amrullah.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tugas Akhir
No. Panggil : TA-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Jakarta: Fakultas Ilmu Komputer Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 89 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
TA-pdf 16-22-50950799 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20527554
Cover