UI - Skripsi Membership :: Back

UI - Skripsi Membership :: Back

Bijeksi yang mempertahankan geodesik di H2 = Bijection that preserves geodesics in H2

Aji Luhur Bhakti Imanudin Firdaus; Hengki Tasman, supervisor; Wed Giyarti, supervisor; Kiki Ariyanti Sugeng, examiner; Arie Wibowo, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020)

 Abstract

Geometri hiperbolik H^n, n>=2, merupakan salah satu contoh geometri non-Euclid. Pada artikelnya, Jeffers (2000) memberikan teorema mengenai bijeksi yang mempertahankan geodesik. Teorema tersebut menyatakan bahwa bijeksi yang mempertahankan geodesik di H^n adalah isometri. Pada kajian ini diberikan rincian bukti teorema di bidang hiperbolik H^2 dengan menggunakan model upper half plane.

Hyperbolic geometry H^n, n>=2, is one of the example of non-Euclid Geometry. In his article, Jeffers (2000) present a theorem regarding bijection that preserves geodesic. The theorem states that bijection which preserves geodesic in H^n is an isometry. In this paper the proof of theorem in hyperbolic plane H^2 will be given with detail using upper half plane model.

 Digital Files: 1

Shelf
 S-Aji Luhur Bhakti Imanudin Firdaus.pdf :: Download

LOGIN required

 Metadata

Collection Type : UI - Skripsi Membership
Call Number : S-Pdf
Main entry-Personal name :
Additional entry-Personal name :
Additional entry-Corporate name :
Study Program :
Subject :
Publishing : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2020
Cataloguing Source LibUI ind rda;
Content Type text
Media Type computer
Carrier Type online resource (rdacarries)
Physical Description xvii, 33 pages : illustration ; 28 cm
Concise Text
Holding Institution Universitas Indonesia
Location Perpustakaan UI, Lantai 3
  • Availability
  • Review
  • Cover
Call Number Barcode Number Availability
S-Pdf 14-22-45280518 TERSEDIA
Review:
No review available for this collection: 20527703
Cover