UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Peningkatan Resolusi Vertikal dari Data Seismik Menggunakan Convolutional Neural Network dan Aplikasinya untuk Mengidentifikasi Reservoir Tipis di Daerah 'R', Kalimantan = Increasing the Vertical Resolution of Seismic Data Using Convolutional Neural Networks and Its Application to Determine Thin Reservoirs in the ‘R’ Region, Kalimantan.

Maulana Kholis Fadhlillah; Supriyanto, supervisor; Haryono, supervisor; Agus Riyanto, examiner; Abdul Hafidz, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Peningkatan resolusi vertikal dari data seismik selalu dilakukan oleh para Geosaintis, terutama pada petroleum system. Data seismik beresolusi tinggi dapat membuat pembacaan stratigrafi bawah permukaan lebih akurat. Data seismik beresolusi tinggi dilakukan peningkatan pada bandwidth frekuensi data seismik terutama pada frekuensi rendah dan tinggi. Terdapat banyak pendekatan untuk meningkatkan frekuensi pada data seismik contohnya multiscale inversion, namun metode ini susah untuk dilakukan. Penelitian ini menggunakan pendekatan baru untuk meningkatkan frekuensi pada data seismik terutama pada frekuensi rendah dengan menggunakan Convolutional Neural Network. Penelitian ini, membahas mengenai penggunaaan Convolutional Neural Network yang dilakukan pada data seismik dikalibrasi dengan data sumur. Hasil estimasi dari metode ini dilanjutkan dengan mengestimasi reservoir tipis pada daerah penelitian. Atribut seismik khususnya Root Mean Square, digunakan untuk mengestimasi daerah reservoir dan spectral Analysis digunakan untuk melihat lebih banyak frekuensi rendah dan tinggi. Hasil yang diperoleh menunjukkan bahwa penggunaan metode Convolutional Neural Network dapat meningkatkan resolusi vertikal. Metode tersebut menghasilkan gambar yang akurat dan tegas dalam melihat lapisan-lapisan tipis. Spetral analysis menunjukkan terdapat lebih banyak frekuensi rendah dan tinggi. Hasil dari Atribut Seismik medapatkan nilai tinggi di pada inline 424, crossline 1007 dan time slice -1200 hingga -1600 ms.

Enhancing the vertical resolution of seismic data is always carried out by geoscientists, especially in the petroleum system. High-resolution seismic data can make subsurface stratigraphic readings more accurate. an increase in the frequency bandwidth of seismic data is carried out on high resolution seismic data, especially at low and high frequencies. There are many approaches to increase the frequency of seismic data. One of the methods is multiscale inversion. the downside of this method is its level of difficulty that really high. This study uses a new approach to increase the frequency of seismic data, especially at low frequencies by using the Convolutional Neural Network. The estimation results from this method are continued by estimating the thin reservoir in the study area. Seismic attributes, especially Root Mean Square, are used to estimate the reservoir area and spectral analysis is used to see more of low and high frequencies. The results indicate that the use of the Convolutional Neural Network method can increase the vertical resolution. This method produces images that are accurate and firm in viewing thin layers. Spectral analysis also shows that there are more low and high frequencies. The result of the seismic attribute got high values at inline 424, crossline 1007 and time slice -1200 to -1600 ms.

 File Digital: 1

Shelf
 S-Maulana Kholis Fadhlillah.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 27 pages ; illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-26845377 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20527806
Cover