Misalkan graf G = (V (G), E(G)) merupakan graf dengan pasangan himpunan tak kosong simpul V (G) dan busur E(G). Pelabelan total super busur antiajaib lokal pada graf G dengan |V (G)| simpul dan |E(G)| busur didefinisikan sebagai pemetaan bijektif f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} dengan hasil pemetaan simpul f(V (G)) = {1, 2, . . . , |V (G)|}, sedemikian sehingga untuk setiap busur bertetangga uv dan vx di E(G), w(uv) ̸= w(vx), di mana w(uv) = f(u) + f(uv) + f(v). Setiap pelabelan total super busur antiajaib lokal menginduksi pewarnaan busur untuk graf G, di mana busur uv diberikan warna w(uv). Banyaknya warna minimal yang dibutuhkan untuk pewarnaan busur tersebut dikatakan sebagai bilangan kromatik pelabelan total super busur antiajaib lokal, dinotasikan dengan Ïsleat(G). Graf bunga matahari Sfn merupakan suatu graf yang diperoleh dengan mengambil suatu graf roda dengan simpul pusat c dan subgraf lingkaran dengan simpul-simpul x1, x2, . . . , xn dan tambahan simpul y1, y2, . . . , yn di mana yi dihubungkan oleh busur kepada xi dan xi+1, di mana xn+1 = x1. Pada penelitian ini, akan dikonstruksi pelabelan total super busur antiajaib lokal pada graf bunga matahari Sfn dan juga ditentukan bilangan kromatiknya, yaitu Ïsleat(Sfn) = n + 1.
Suppose that a graph G = (V (G), E(G)) be a graph with a nonempty vertices set V (G) and edges set E(G). A super local edge antimagic total labeling on a graph G with |V (G)| vertices and |E(G)| edges defined as a bijective map f : V (G) ∪ E(G) → {1, 2, . . . , |V (G)| + |E(G)|} with the result vertex mapping f(V (G)) = {1, 2, . . . , |V (G)|} such that for any adjacent edges uv and vx in E(G), w(uv) ̸= w(vx), which w(uv) = f(u) + f(uv) + f(v). Each super local edge antimagic total labeling induces an edge coloring for the graph G, where the edge uv ∈ E(G) is assigned to the color w(uv). The minimum number of colors required for the edge coloring is called the chromatic number of super local edge antimagic total labeling, denoted by Ïsleat(G). The sunflower graph Sfn is a graph obtained by taking a wheel with central vertex c and the n-cycle x1, x2, . . . , xn and additional vertices y1, y2, . . . , yn where yi is joined by edges to xi and xi+1, where xn+1 = x1. In this research, the super local edge antimagic total labeling on sunflower graph Sfn is constructed and its chromatic number also be determined, which Ïsleat(Sfn) = n + 1.