UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Model Integer Valued Autoregressive dengan Inovasi Berdistribusi Bell = Integer Valued Autoregressive Model with Bell Inovations

Gregorius Arvianto; Fevi Novkaniza, supervisor; Rahmat Al Kafi, supervisor; Dian Lestari, examiner; Arman Haqqi Anna Zili, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022)

 Abstrak

Pemodelan runtun waktu banyak digunakan dalam berbagai bidang seperti keuangan, kesehatan, dan asuransi. Model runtun waktu yang sering digunakan adalah model runtun waktu kontinu. Akan tetapi di dunia nyata, diperlukan model runtun waktu yang bisa memodelkan data diskrit. Model INAR(1) adalah salah satu model runtun waktu yang bisa menangani data diskrit dengan asumsi inovasi atau error berdistribusi Poisson. Namun, distribusi Poisson mempunyai mean yang sama dengan variansinya sehingga distribusi Poisson memiliki asumsi equidispersi. Hal ini membatasi fleksibilitas model runtun waktu yang dapat dikonstruksi untuk data diskrit karena bisa terjadi overdispersi. Dalam artikel ini dikonstruksi sebuah model yang dapat mengatasi masalah overdispersi, yaitu model BL-INAR (1), yang merupakan model INAR(1) dengan inovasi yang berdistribusi Bell serta sifat dari model BL-INAR(1). Distribusi Bell adalah distribusi yang menggunakan satu parameter dengan basis ekspansi deret dari bilangan Bell. Parameter model BL-INAR(1) diestimasi menggunakan metode Conditional Least Squares. Model BL-INAR(1) selanjutnya diimplementasikan pada data mogok kerja di Amerika Serikat.

Time series models are used frequently in other field such as finance, medicine, and insurance. Models that were often used for time series are continuous time series models. Nonetheless, time series models that can handle discrete data are also needed. INAR(1) is one example of time series models that is able to deal with discrete data and its innovation are using Poisson distribution. However, Poisson distribution has a mean of same value with its variance which means Poisson distribution assumed equidispersion. This assumption limits the flexibility of time series models that can be built because overdispersion happen often in time series. In this paper, we will analyse a model that will solve overdispersion, BL-INAR(1)model which is an INAR(1) model with Bell inovations. Bell distribution is a distribution that use one parameter with the basis of series expansion of Bell numbers. Parameters of BL-INAR(1) model will be estimated using Conditional Least Squares. As an example, BL-INAR(1) model will be tested using strikes data in United States.

 File Digital: 1

Shelf
 S-Gregorius Arvianto.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource (rdcarrier)
Deskripsi Fisik : xix, 53 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-77116525 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20528878
Cover