UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Penerapan Aplikasi Website yang Menunjang Machine Learning dan Visualisasi Data untuk Membantu Perusahaan XYZ dalam Memprediksi Perilaku Pembeli = Implementation of Website-Based Applications that Support Machine Learning and Data Visualization to Help XYZ Company in Predicting Buyer Behavior

Naufal Hilmi Irfandi; Ari Wibisono, supervisor; Meganingrum Arista Jiwanggi, examiner; Muhammad Hafizhuddin Hilman, examiner (Fakultas Ilmu Komputer Universitas Indonesia, 2022)

 Abstrak

Perusahaan XYZ menerapkan Customer Life Cycle atau CLC yang sudah disesuaikan dengan kebutuhan perusahaan demi menjaga loyalitas pengguna. Tak hanya menjaga loyalitas, Perusahaan XYZ menerapkan CLC guna memperluas bisnis yang dijalani olehnya. Dengan bantuan teknologi, CLC dapat dengan mudah untuk dianalisis lebih mendalam. Teknologi yang digunakan berupa pembelajaran mesin. Pembelajaran mesin ini diimplementasikan untuk mendapatkan insight dari data yang dimiliki Perusahaan XYZ. Dalam mendapatkan insight tersebut, digunakan beberapa metode seperti Support Vector Machine, Logistic Regression, Gradient Boosting, Random Forest, Decision Tree, dan FPGrowth. Insight yang didapatkan selanjutnya ditampilkan dalam bentuk visualisasi data yang diaplikasikan ke dalam website. Terdapat tiga permasalahan berbeda yaitu prediksi pembeli potensial, prediksi produk yang akan dibeli, dan prediksi waktu pembelian berikutnya. Permasalahan pertama dapat diselesaikan dengan model Logistic Regression dengan f1-score sebesar 76.35%. Permasalahan kedua diselesaikan dengan model FP-Growth dengan nilai minimum support dan confidence sebesar 0.001. Untuk permasalahan ketiga dapat diselesaikan dengan model Decision Tree dengan nilai akurasi 78.76% dan f1-score sebesar 77.01%. Dilakukan pula pengujian terhadap response time serta SQL query yang digunakan pada setiap endpoint yang bekerja sebagai aktor untuk melakukan distribusi data kepada aplikasi frontend dan aktor untuk melakukan update database. Terakhir, dilakukan pula pengujian terhadap visualisasi data. Pengujian terhadap visualisasi data dilakukan secara kualitatif. Pengujian ini dilakukan dengan menerapkan beberapa tipe visualisasi data untuk tiap business question yang ada. Setelah itu, dilakukan perbandingan pada tiap tipe visualisasi data sehingga mendapatkan visualisasi data yang tepat untuk tiap business question yang ada.

XYZ Company implements customized Customer Life Cycle or CLC that fits with company’s needs in order to maintain user loyalty. Not only maintaining user loyalty, XYZ Company implements CLC in order to expand its business. With the help of technology, CLC can be easily analyzed with more depth. Technology that is being used within this research is machine learning. Machine learning is implemented to gain insights from data owned by Company XYZ. While obtaining insights, machine learning use several various methods such as Support Vector Machine, Logistic Regression, Gradient Boosting, Random Forests, and Decision Trees. The insights obtained from machine learning are displayed in the form of data visualization that is applied to website. Examination on the machine learning model was formed with different data balancing techniques. Examination using Undersampling balancing technique along with Decision Tree model gives the highest f1-score value at 88.70%. Examination were also conducted on the response time and SQL queries were also carried out for each endpoint that works as an actor to distribute data to frontend applications and actors to update the database. Finally, examination and comparison is conducted on data visualization using qualitative approach. Moreover, this examination is conducted by applying several types of data visualization for each existing business questions. At the end, comparisons were made for each type of data visualization to get the optimum visualization regarding each business question.

 File Digital: 1

Shelf
 S-Naufal Hilmi Irfandi.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Ilmu Komputer Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xxI, 120 pages ; illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-41552359 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 20529148
Cover