ABSTRAKPermasalahan utama dalam kompresi gambar adalah bagaimana mendapatkan PSNR (Peak Signal to Noise Ratio) dan Rasio Kompresi (RK) yang baik (tinggi) secara bersamaan serta gambar hasil kompresi yang masih dikenali oleh manusia serta waktu pemrosesan yang relatif cepat.
Rasio kompresi yang tinggi menunjukkan penurunan nilai derajat keabuan (grayscale) dalam bit per piksel dan PSNR yang tinggi berhubungan dengan kwalitas gambar rekonstruksi yang diperoleh pada penerima. Proses kompresi dilakukan dengan mengkuantisasi koefisien-koefisien wavelet yang sangat beragam menjadi nilai dan tingkat tertentu. Nilai ini ditentukan oleh proses iterasi untuk mendapatkan distorsi minimal. Pemrosesan dengan ukuran sel yang sering digunakan yaitu 4x4 walaupun mempunyai PSNR yang tinggi namun mempunyai kelemahan rasio kompresi yang rendah serta waktu pengalahan yang relatif lama. Untuk itu digunakn ukuran sel (N) lain yaitu 8x8, 16x16 dan 32x32 kemudian dilakukan proses iterasi (k) untuk mencari distorsi minimum dan penambahan jumlah tingkat kwantisasi (M). Kedua hal terakhir ini adalah untuk menaikkan PSNR, sehingga walaupun ukuran sel diperbesar namun PSNRnya masih dapat dipertahankan. Dari nilai PSNR dan rasio kompresi yang diperoleh serta karakteristiknya diperoleh titik optimal yaitu pada ukuran sel ditambah proses iterasi don jumlah tingkat kwantisasi.
Hasilnya adalah sel ukuran 32x32 dapat digunakan untuk mendapatkan rasio kompresi tertinggi dengan M=4, k=0 atau M=2, k=0 atau sel ukuran 16x16 untuk mendapatkan PSNR yang baik.
ABSTRACTThe main problem on image compression is how to achieve value both Compression Ratio (CR) and Peak Signal to Noise Ratio (PSNR) simultaneously high, a recognized reconstructed image and relatively small time processing.
Compression ratio deals with decreasing grayscale value of an original image and PSNR deals with the quality of an image. In short word, the compression process is conducted by quantizing the various values to certain values and levels of wavelet coefficients. These values are determined by adding on iteration process to get minimum distortion in a cell. The cell size used is usually 4x4 that has the high PSNR, low compression ratio and high time processing. To dissolve such things, 8x8, 16x16 and 32x32 (N) of cell sizes are in use, iterate (k) and add of quantization level (M). The last two things are to enhance PSNR but to decrease compression ratio in contrast as well.
From value of PSNR and CR as well as the characteristic, the optimum point is then to find out.
The result is that 32x32 cell size is suitable to achieve the highest compression ratio with combining M=4 with k=O or M=2, k=O or 16x16 cell size to achieve good PSNR.