UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Rancang Bangun Sistem Notifikasi Pesan Pengenalan Isyarat Tangan Pasien Menggunakan Long Short-Term Memory (LSTM) dan Mediapipe = Development of Patient Hand Signal Recognition System with Message Notification Using Long Short-Term Memory (LSTM) and Mediapipe

Hanif Zufar Rafif; Yan Maraden, supervisor; Ruki Harwahyu, examiner; I Gde Dharma Nugraha, examiner (Fakultas Teknik Universitas Indonesia, 2022)

 Abstrak

Komunikasi yang efektif sangat penting untuk penyediaan layanan kesehatan yang berkualitas. Di rumah sakit, pasien yang kemampuan komunikasinya terbatas secara fisik mungkin menghadapi tantangan dalam mengungkapkan kebutuhan dasar mereka kepada penyedia layanan kesehatan. Untuk mengatasi masalah ini, dalam penelitian ini dikembangkan sistem pengenalan isyarat tangan untuk pasien dengan keterbatasan fisik. Sistem ini menggunakan Mediapipe dan long short-term memory (LSTM) model untuk mendeteksi dan mengklasifikasi 24 kelas isyarat tangan. Isyarat tangan untuk pasien yang digunakan berdasarkan kartu single hand sign communication, yang dibuat oleh Derek Tune, seorang intrepeter bahasa isyarat pada tahun 2012. Akuisisi data hand landmark dalam bentuk video sepanjang 10 frame untuk setiap kelas isyarat tangan, yang kemudian diolah dan dianalisis menggunakan model LSTM. Model LSTM dilatih menggunakan teknik early stopping untuk mendapatkan performa optimal, menghasilkan tingkat akurasi model 85,53% dengan presisi 0,911. Model dapat mendeteksi isyarat tangan secara waktu nyata dengan waktu inferensi 130 milidetik. Sistem ini juga dirancang untuk mengirim pesan notifikasi secara otomatis ke penyedia layanan kesehatan melalui bot Telegram. Secara keseluruhan, sistem pengenalan isyarat tangan pasien memiliki potensi untuk meningkatkan komunikasi antara pasien dan penyedia layanan kesehatan dan memungkinkan pasien penyandang disabilitas untuk lebih mudah memenuhi kebutuhan dasar mereka.

Effective communication is essential to provide quality health services. In hospitals, patients with physically limited communication skills may face challenges expressing their basic needs to health care providers. To overcome this problem, this research developed a hand signal recognition system for patients with physical limitations. This system uses the Mediapipe model and long shortterm memory (LSTM) to detect and classify 24 classes of hand signals. Hand signals for patients used are based on the single hand sign communication card, which was made by Derek Tune, a sign language interpreter in 2012. Acquisition of hand landmark data in the form of a 10-frame video for each hand signal class, which is then processed and analyzed using LSTM models. The LSTM model minimizes using early stopping techniques to get optimal performance, resulting in a model accuracy rate of 85.53% with a precision of 0.911. The model can detect real-time hand signals with an inference time of 130 milliseconds. The system is also designed to automatically send message notifications to healthcare providers via Telegram bots. Overall, patient hand signal recognition systems have the potential to improve communication between patients and healthcare providers and enable patients with disabilities to meet their basic needs more easily.

 File Digital: 1

Shelf
 S-Hanif Zufar Rafif.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 64 pages : illustrations + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-22680137 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920517167
Cover