UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Pemodelan Spatio-temporal Titik Panas di Kalimantan Timur = Spatio-temporal Modeling of Hotspots in East Kalimantan

Pramudhian Firdaus; Supriatna, supervisor; Masita Dwi Mandini Manessa, supervisor; Adi Wibowo, examiner; Asep Karsidi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Kebakaran hutan dan lahan adalah kejadian yang mengancam kehidupan dan mata pencaharian, mempengaruhi ekonomi nasional, dan memiliki potensi yang berdampak panjang pada manusia. Saat ini, 62 persen wilayah Kalimantan mengalami kerentanan kebakaran hebat, dengan kira-kira 10 persen dari wilayah tersebut memiliki kerentanan yang sangat tinggi. Untuk mengurangi dampak dari kebakaran hutan dan lahan terhadap kerusakan lingkungan dan manusia, analisis spasial dan temporal perlu dilakukan salah satunya menggunakan metode machine learning. Penelitian ini bertujuan untuk menganalisis pola spatio-temporal titik panas, hubungan antara titik panas dan unsur iklim, dan memproyeksikan potensi titik panas secara spatio-temporal di daerah Kalimantan Timur. Titik panas didapat dari database SiPongi selama periode 2013-2022 diklasifikasikan menggunakan emerging hotspot analysis. Data iklim dari model TerraClimate dengan resolusi 1/240 dinilai pada setiap pola titik panas yang ada dengan menghitung nilai korelasi dan determinasi pada setiap unsur, yaitu curah hujan, suhu maksimum, evapotranspirasi, kecepatan angin, dan kelembaban tanah. Forest-based forecast digunakan untuk melihat potensi titik panas menggunakan berdasar unsur iklim dan geografis lainnya di Kalimantan Timur. Pola sebaran titik panas di Kalimantan Timur secara spasial dari penelitian ini dapat diketahui memiliki pola yang terklasifikasikan atau mengelompok dengan karakteristiknya masing-masing. Hasil penelitian juga menunjukkan bahwa unsur iklim memiliki nilai yang berpengaruh terhadap penentuan lokasi titik panas. Proyeksi titik panas menggunakan machine learning algoritma random forest dalam penelitian ini dapat menunjukkan prakiraan titik panas dengan kesesuaian jumlah daerah potensi titik panas secara spatio-temporal

Forest fires are events that threaten lives and livelihoods, affect national economies, and have the potential to have long-lasting impacts on people. Currently, 62 percent of Kalimantan is highly vulnerable to fires, with approximately 10 percent of the area experiencing very high vulnerability. To reduce the impact of forest fires on environmental and human damage, spatial and temporal analysis needs to be carried out, one of which is using machine learning methods. This study aims to analyze the spatio-temporal patterns of hotspots, the relationship between hotspots and climatic elements, and project hotspot potential spatio-temporally in the East Kalimantan region. Hot spots obtained from the Sipongi database for the period 2013-2022 are classified using emerging hotspot analysis. Climate data from the TerraClimate model with 1/240 resolution is assessed for each hotspot pattern by calculating the correlation and determination values for each element, namely rainfall, maximum temperature, evapotranspiration, wind speed, and soil moisture. Forest-based forecasts are used to see potential hotspots based on climate and other geographical elements in East Kalimantan. The spatial distribution pattern of hotspots in East Kalimantan from this study can be seen to have a pattern that is classified or grouped with their respective characteristics. The results also show that the climate element has a value that influences the location of hotspots. Hot spot projections using the machine learning random forest algorithm in this study can show hotspot predictions with the spatio-temporal suitability of the number of potential hot spot areas.

 File Digital: 1

Shelf
 T-Pramudhian Firdaus.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Jakarta: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xv, 144 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-23-04702598 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920518657
Cover