Membeli asuransi jiwa merupakan salah satu bentuk pengendalian risiko kerugian yang ditimbulkan dari ketidakpastian yang dapat terjadi di masa depan. Ketika membeli asuransi jiwa, pemegang polis berkewajiban untuk membayar premi sesuai dengan jumlah yang telah ditentukan. Terdapat beberapa faktor yang memengaruhi besaran premi yang wajib dibayarkan, salah satunya adalah tingkat suku bunga. Pada umumnya, perhitungan premi asuransi jiwa dilakukan dengan menggunakan tingkat suku bunga konstan. Akan tetapi, penggunaan tingkat suku bunga konstan kurang sesuai dengan kenyataan bahwa tingkat suku bunga selalu berubah-ubah dari waktu ke waktu. Oleh karena itu, tujuan dari penelitian ini adalah untuk melakukan perhitungan premi asuransi jiwa menggunakan tingkat bunga stokastik, yaitu model Longstaff-Schwartz. Model Longstaff-Schwartz merupakan salah satu model tingkat bunga stokastik dengan dua faktor stokastik yaitu
short term interest rate dan
instantaneous variance of change of the interest rate. Dengan adanya dua faktor stokastik, model tersebut dapat semakin mencerminkan bentuk pergerakan tingkat suku bunga yang sebenarnya. Model Longstaff-Schwartz adalah salah satu model
equilibrium sehingga memiliki bentuk solusi analitik untuk
discount bond price. Untuk itu akan dicari pembentukan dari model Longstaff-Schwartz. Kemudian, akan diestimasi parameter-parameter yang digunakan pada persamaan
discount bond price. Selanjutnya, dilakukan perhitungan premi asuransi jiwa diskrit dwiguna pada suatu individu menggunakan prinsip ekuivalensi dan
discount bond price yang diperoleh sebagai faktor diskonto.
Having a life insurance is a form of controlling the risk of losses arising from the uncertainties that may occur in the future. When buying a life insurance product, the policyholder is obliged to pay premiums according to a predetermined amount. There are several factors that influence the amount that must be paid, one of which is the interest rate. In general, life insurance premiums are calculated using a constant interest rate. However, the use of constant interest rates does not match the fact that interest rates always change from time to time. Therefore, the purpose of this study is to calculate life insurance premiums using the stochastic interest rate, called the Longstaff-Schwartz model. The Longstaff-Schwartz model is a stochastic interest rate model with two stochastic factors, which is short-term interest rate and the instantaneous variance of interest rate changes. With two stochastic factors, the model can reflect the actual shape of interest rate movements. The Longstaff-Schwartz model is one of the equilibrium models, so it has the form of an analytical solution for the discount bond prices. For this reason, the formation of the Longstaff-Schwartz model will be sought. Then, the parameters used in the discount bond price equation will be estimated. Next, the discrete endowment life insurance premium is calculated for an individual using actuarial equivalence principle and the obtained discount bond price as a discount factor.