UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Model Hybrid ARIMA-RNN dengan Filter Empirical Mode Decomposition untuk Peramalan Indeks Harga Saham Gabungan = Hybrid ARIMA-RNN Model with Empirical Mode Decomposition Filter for Forecasting Indonesia Composite Index

Martin Nathaniel; Fevi Novkaniza, supervisor; Gianinna Ardaneswari, supervisor; Bevina Desjwiandra Handari, examiner; Mila Novita, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Indeks Harga Saham Gabungan (IHSG) merupakan indeks saham yang biasanya digunakan investor untuk melihat kondisi pasar saham. IHSG merupakan data yang berjenis runtun waktu. Peramalan yang akurat pada IHSG dapat membantu investor meminimalisir risiko. Salah satu model runtun waktu yang sering digunakan adalah model Autoregressive Integrated Moving Average (ARIMA) dimana model ini mengasumsikan bahwa runtun masa kini memiliki hubungan linier dengan runtun historisnya. Jika terdapat pola nonlinier pada data runtun waktu, diperlukan model lain yang dapat mengakomodir pola nonlinier tersebut seperti model Recurrent Neural Network (RNN). Namun, bisa saja sebuah runtun waktu memiliki pola linier dan nonlinier sehingga dikembangkan sebuah model hybrid ARIMA-RNN. Data runtun waktu yang digunakan pada model hybrid ARIMA-RNN direpresentasikan sebagai penjumlahan dari komponen linear dan nonlinier. Ketika dijumpai runtun waktu yang kompleks, model hybrid ARIMA-RNN tidak mampu mendekomposisi data sebagai komponen linier dan nonlinier. Kompleksitas suatu runtun waktu dapat ditentukan dengan menggunakan Sample Entropy (SE). Meramalkan runtun waktu yang kompleks dengan model hybrid ARIMA-RNN dapat mengakibatkan penurunan performa peramalan. Untuk meningkatkan performa model hybrid ARIMA-RNN, diperkenalkan metode dekomposisi (filter) untuk mengurangi kompleksitas dari runtun waktu. Penelitian ini mengonstruksi model hybrid ARIMA-RNN dengan filter Empirical Mode Decomposition (EMD). Konstruksi model hybrid ARIMA-RNN diterapkan pada data indeks penutupan harian IHSG dari tanggal 1 Januari 2016 hingga 31 Desember 2019. Filter EMD pada data tersebut menghasilkan 6 IMF (Intrinsic Mode Function) dan residual yang kompleksitasnya bervariasi. Berdasarkan perhitungan menggunakan
Sample Entropy (SE) didapat IMF1 hingga IMF5 adalah runtun kompleksitas tinggi sedangkan IMF6 dan residual adalah runtun kompleksitas rendah. Runtun kompleksitas tinggi dan kompleksitas rendah selanjutnya masing-masing dimodelkan dengan RNN dan
ARIMA. Hasil peramalan akhir pada model hybrid ARIMA-RNN dengan filter EMD memberikan nilai RMSE sebesar 35,5702. Nilai RMSE yang didapat lebih kecil dibandingkan nilai RMSE pada model ARIMA, model RNN, dan model hybrid ARIMARNN. Hasil penelitian menunjukkan bahwa model hybrid ARIMA-RNN dengan filter EMD memberikan performa peramalan terbaik pada ramalan IHSG dan juga penggunaan filter EMD memberikan peningkatan performa peramalan pada model hybrid ARIMARNN.

Indonesia Composite Index (IDX Composite) is a stock index that is usually used by investors to see stock market conditions. Accurate forecasting on the IDX composite, which is time series data, may assist investors in reducing risk. Autoregressive Integrated Moving Average (ARIMA) model, which implies a linear relationship between the current series and its historical series, is one of the time series models that is frequently used. Other model, such as the Recurrent Neural Network (RNN) model, is required if the time series data contain a nonlinear pattern. A hybrid ARIMA-RNN model was developed since it is possible for a time series that have both a linear and nonlinear pattern. The sum of the linear and nonlinear components is used to represent the time series data in the ARIMA-RNN hybrid model. The ARIMA-RNN hybrid model is unable to separate the data into linear and nonlinear components when a complex time series is present. The complexity of a time series can be determined by using Sample Entropy (SE). The ARIMA-RNN hybrid model's forecasting performance may suffer when forecasting complex time series. To improve the performance of the hybrid ARIMA-RNN model, a decomposition (filter) method is introduced to reduce complexity and deal with nonstationary and nonlinear time series. This research constructs a hybrid ARIMA-RNN model with the Empirical Mode Decomposition (EMD) filter. The construction of the hybrid ARIMA-RNN model is applied to the daily closing of IDX composite from 1 January 2016 to 31 December 2019. The EMD filter on the data produces 6 IMFs and a residual with varying complexity. Based on calculations using Sample Entropy (SE), IMF1 to IMF5 are high complexity time series, while IMF6 and the residual are low complexity time series. The high and low complexity time series are then modeled with RNN and ARIMA, respectively. The final forecasting result on the hybrid ARIMA-RNN model with the EMD filter gives an RMSE value of 35.5702. This RMSE value is smaller than the RMSE values of the ARIMA model, the RNN model, and the hybrid ARIMARNN model. The results show that the hybrid ARIMA-RNN model with the EMD filter provides the best forecasting performance for the IDX composite forecast and also the use of the EMD filter improves the forecasting performance of the hybrid ARIMA-RNN model.

 File Digital: 1

Shelf
 S-Martin Nathaniel.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 80 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-30418036 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920521863
Cover