UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Perancangan Detektor Pengendara Motor Tanpa Helm Berbasis Pengolahan Citra dengan Metode YOLOv5 = Helmetless Motorist Detector Design Based on Image Processing with YOLOv5 Method

Muhammad Aditiya Pratama; Lubis, Muhammad Firdaus Syawaludin, supervisor; Ruki Harwahyu, examiner; I Gde Dharma Nugraha, examiner (Fakultas Teknik Universitas Indonesia, 2023)

 Abstrak

Kendaraan roda dua atau yang biasa disebut sebagai motor merupakan kendaraan yang awam ditemukan khususnya di Negara Indonesia. Kendaraan yang sangat mudah untuk digunakan dan terjangkau harganya menjadikannya kendaraan nomor satu untuk digunakan sehari-hari. Banyak regulasi yang telah mengatur tentang keamanan dan kenyamanan untuk berkendara, namun masih banyak pihak yang melanggar hal tersebut. Oleh karena itu diperlukannya sebuah alat bantu yang dapat mendeteksi dan meregulasi pengendara sepeda motor. Menggunakan deep learning, komputer dapat mengelolah citra dengan tingkat akurasi yang tinggi dalam mendeteksi objek maupun klasifikasi objek. Salah satu metode Deep Learning yang digunakan untuk pengelolahan citra dan klasifikasi objek adalah YOLOv5 sebagai model utama. Tujuan dari Skripsi ini adalah untuk mengimplementasikan sistem detektor pengendara motor tanpa helm berbasi pengolahan citra dengan metode YOLOv5 dan melihat tingkat akurasi yang didapatkan. Hasil percobaan pada penelitian ini membuktikan bahwa sistem mampu melakukan deteksi dan kalkulasi dengan akurasi yang cukup tinggi yaitu sekitar 40 %. Hal ini sangat dipengaruhi dengan adanya jenis metode penentuan ID yang digunakan.

Two-wheeled vehicles or commonly referred to as motorbikes are vehicles that are commonly found, especially in Indonesia. A vehicle that is very easy to use and affordable, making it the number one vehicle for everyday use. Many regulations have regulated the safety and comfort of driving, but there are still many parties who violate this. Therefore we need a tool that can detect and regulate motorbike riders. Using deep learning, computers can manage images with a high degree of accuracy in detecting and classifying objects. One of the Deep Learning methods used for image processing and object classification is the YOLOv5. The purpose of this thesis is to implement an image processing-based helmetless motorcycle detector system using the YOLOv5 method and see the level of accuracy obtained. The experimental results in this study prove that the system is capable of performing detection and calculations with a fairly high accuracy of around 40%. This is strongly influenced by the type of ID determination method used.

 File Digital: 1

Shelf
 S-Muhammad Aditiya Pratama.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : 65 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-06310485 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920524849
Cover