UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Perancangan Program Estimasi Risiko Kegagalan Pada Peralatan Perangkat Pelepas Tekanan Akibat Fail on Demand Berbasis Pembelajaran Mesin Dengan Metode Artificial Neural Network = Development of Pressure Relief Device Failure Risk Estimation Program Caused by Failure on Demand Based on Machine Learning with Artificial Neural Network Method

Madeline Rosmariana; Dedi Priadi, supervisor; Jaka Fajar Fatriansyah, examiner; Donanta Dhaneswara, examiner; C. Martin R., supervisor (Fakultas Teknik Universitas Indonesia, 2023)

 Abstrak

Peralatan Perangkat Pelepas Tekanan (PRD) dioperasikan dengan tujuan untuk melindungi kehidupan dan keselamatan dalam suatu sistem bertekanan. Peralatan akan mengalami penurunan kondisi seiring berjalannya waktu pemakaian. Ketidakmampuan PRD untuk melakukan fungsinya perlu diidentifikasi sebagai mode kegagalan. Untuk mengurangi risiko apabila terjadi kegagalan, suatu pendekatan seperti Risk Based Inspection (RBI) dapat dilakukan. Metode RBI yang umum digunakan masih menggunakan pendekatan kualitatif, sehingga menghasilkan variasi yang cukup besar. Penelitian ini mengusulkan metode analisa risiko dengan menggunakan pembelajaran mesin berbasis deep learning untuk mengembangkan suatu model penilaian risiko pada PRD akibat mode kegagalan fail on demand (POFOD) yang diharapakan dapat mempersingkat waktu, meningkatkan akurasi, efisiensi dalam pengolahan data hasil inspeksi, serta biaya; dengan menawarkan hasil akurasi perhitungan yang tinggi. Penelitian ini menghasilkan program prediksi risiko dengan menggunakan metode klasifikasi pembelajaran mesin berbasis deep learning akibat mode kegagalan fail on demand pada peralatan perangkat pelepas tekanan. Pembuatan dataset yang digunakan pada model bersumber dari 160 data yang diolah dengan menggunakan standar API 581. Penelitian ini menggunakan beberapa parameter model seperti test size sebesar 20%, random state bernilai 0, penggunaan jumlah epoch sebesar 150, learning rate sebesar 0.001, dan layer berjumlah 3 dengan dense 64,64,8; yang menghasilkan akurasi model sebesar 91%, dari validasi confusion matrix.

Pressure Relief Device (PRD) equipment is operated with the aim of protecting the lives and safety within a pressurized system. An equipment experiences deterioration over time. The inability of PRD equipment to perform its design function needs to be identified as a failure mode. To reduce the risk in case of failure, an approach such as Risk Based Inspection (RBI) can be implemented. The commonly used RBI methods still rely on qualitative approaches, leading to significant variations. This research proposes a method using deep learning to develop a risk assessment model for PRD due to the failure on demand. This is expected to shorten the assessment time, improve accuracy, efficiency, and reduce costs by offering highly accurate calculation results. This research produces a risk prediction program using a deep learning classification method for POFOD in pressure relief device equipment. The dataset used in the model consists of 160 data processed according to API 581 standards. This research utilizes several model parameters, including a test size of 20%, 0 value of random state, 150 epochs, a learning rate of 0.001, and 3 layers with dense of 64, 64, 8. The model achieves an accuracy of 91% from the validation confusion matrix.

 File Digital: 1

Shelf
 T-Madeline Rosmariana.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 70 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-49504712 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920525073
Cover