UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Disain Strategi Manajemen Energi Kereta Hibrid Berbasis Pengendali Prediktif Nonlinier = Design of Energy Management System for Hybrid Train Base on Nonlinear Predictive Controller

Muhammad Dzaki Mubarak; Aries Subiantoro, supervisor; Benyamin Kusumo Putro, examiner; Abdul Halim, examiner (Fakultas Teknik Universitas Indonesia, 2023)

 Abstrak

Moda transportasi kereta merupakan transportasi umum yang cukup diminati penduduk Indonesia. Namun, Moda transportasi ini masih sedikit menggunakan energi yang bersih. Kereta Api jarak jauh Indonesia masih menggunakan diesel. Bahan bakar diesel tentunya merupakan energi konvensional yang penggunaannya ingin dikurangi oleh dunia. Salah satu solusinya adalah dengan mengurangi pengurangan diesel pada kereta api jarak jauh. Untuk mengurangi penggunaan bahan bakar dan mengurangi emisi dari mesin, maka kereta api bisa dibuat secara hibrid dengan menggabungkan mesin diesel dengan sumber energi listrik, seperti baterai. Kereta hibrid memerlukan EMS (Energy Management System) untuk mengatur energi apa yang dipakai dengan cara yang optimal. Salah satu basis dari EMS ini adalah MPC (Model Predictive Control). Salah satu hal yang menjadi pertimbangan dari Model Predictive Control adalah prediktor nya. Dengan perkembangan Deep Learning, Long Short Term Memory Neural Network (LSTM) dikenal baik untuk memodelkan data sequence. LSTM bisa membuat model prediksi kecepatan dengan data yang telah dikumpulkan. Dengan prediksi daya yang akurat, Model Predictive Control bisa menghasilkan kontrol EMS yang lebih ekonomis dengan biaya komputasi yang bisa diimplementasikan.

The train mode of transportation is public transportation that is quite attractive to the Indonesian population. However, this mode of transportation still uses little clean energy. Indonesian long-distance trains still use diesel. Diesel fuel is of course a conventional energy whose use the world wants to reduce. One solution is to reduce diesel reduction on long-distance trains. To reduce fuel use and reduce emissions from the engine, a hybrid train can be made by combining a diesel engine with a source of electrical energy, such as a battery. Hybrid trains require an EMS (Energy Management System) to regulate what energy is used in an optimal way. One of the bases of this EMS is MPC (Model Predictive Control). One of the things to consider in the Predictive Control Model is its predictors. With the development of Deep Learning, Long Short Term Memory Network (LSTM) is well known for modeling data sequences. LSTM can create a speed prediction model with the data that has been collected. With accurate power predictions, the Predictive Control Model can produce EMS control that is more economical with computational costs that can be implemented.

 File Digital: 1

Shelf
 S-Muhammad Dzaki Mubarak.pdf :: Unduh

LOGIN required

 Kata Kunci

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : ix, 60 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-14530785 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920525670
Cover