UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Rancang Bangun Sistem Deteksi Pencurian Tenaga Listrik Menggunakan Algoritma Klasifikasi Extreme Gradient Boosting (XGBoost) pada Data Pemakaian Listrik Pelanggan Pascabayar = Design and Development of an Electricity Theft Detection System Using Extreme Gradient Boosting (XGBoost) Classification Algorithm on Postpaid Customer Electricity Consumption Data.

Bagus Nurhuda; Yan Maraden, supervisor; Gunawan Wibisono, examiner; Naufan Raharya, examiner (Fakultas Teknik Universitas Indonesia, 2022)

 Abstrak

Seiring bertambahnya jumlah pelanggan listrik di Indonesia menjadikan persentase kerugian dari susut non-teknis pada Perusahaan Listrik Negara (PLN) semakin besar tiap tahunnya yang menyebabkan berkurangnya keuntungan. Berbagai upaya telah dilakukan oleh PLN dengan membentuk tim Penertiban Pemakaian Tenaga Listrik (P2TL) berdasarkan informasi indikasi pencurian dan kelainan maupun pemilihan manual pada pelanggan pascabayar. Namun upaya yang dilakukan PLN sejauh ini masih belum efektif dalam penentuan Target Operasi (TO) karena membutuhkan waktu yang lama dengan hasil akurasi yang kecil. Tujuan dari penelitian ini adalah untuk menganalisis efektivitas dari data pemakaian listrik (kWh) pelanggan dalam pemodelan machine learning menggunakan algoritma Extreme Gradient Boosting (XGBoost) menggunakan metode feature engineering dan hyperparameter tuning. Hasil dari penelitian ini membuktikan bahwa penggunaan riwayat pemakaian listrik efektif dalam pemodelan hingga tingkat akurasi mencapai 80% pada penggunaan data jam nyala dan 82% pada penggunaan data gabungan jam nyala dengan metode statistik dan bantuan hyperparameter tuning. Dengan hasil ini dapat membantu PLN untuk menentukan TO pada pelanggan pascabayar dengan lebih mudah dan efisien menggunakan teknologi machine learning.

As the number of electricity customers in Indonesia increases, the percentage of non-technical losses in PLN (Perusahaan Listrik Negara) has been growing every year, leading to a decrease in profits. Various efforts have been made by PLN through the establishment of the Penertiban Pemakaian Tenaga Listrik (P2TL) team based on indications of theft or abnormalities and manual selection of postpaid customers. However, PLN's efforts so far have been ineffective in determining the Operational Target (TO) due to the long time required and low accuracy. The aim of this research is to analyze the effectiveness of customer electricity usage data (kWh) in machine learning modeling using the Extreme Gradient Boosting (XGBoost) algorithm with feature engineering and hyperparameter tuning methods. The results of this study demonstrate that the use of electricity usage history is effective in modeling, achieving an accuracy rate of 80% when using on/off hours data and 82% when using a combination of on/off hours data with statistical methods and the assistance of hyperparameter tuning. These findings can assist PLN in determining the TO for postpaid customers more easily and efficiently using machine learning technology.

 File Digital: 1

Shelf
 S-Bagus Nurhuda.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2022
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiv, 81 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-23-23594924 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920525714
Cover