UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Prediksi Chemical Engineering Plant Cost Index Tahunan Menggunakan Machine Learning = Prediction of Annual ≈ Cost Index using Machine Learning

Putu Adika Reswara; Riezqa andika, supervisor; Asep Handaya Saputra, examiner (Fakultas Teknik Universitas Indonesia, 2023)

 Abstrak

Di antara sebagian besar sektor industri lainnya, industri kimia sedang mengalami pergolakan signifikan yang didorong oleh konsep yang secara kolektif dikenal sebagai Industri 4.0. Data sains adalah komponen penting dari Industri 4.0 karena memungkinkan ekstraksi informasi kontekstual dari berbagai sumber data. Ketika sistem menjadi lebih kompleks, kebutuhan para insinyur untuk mengekstrak sinyal dari data dengan tepat berkembang secara dramatis, menuntut literasi data dan keahlian analitik pada generasi berikutnya dari lulusan teknik kimia. Salah satu dari banyak kasus di mana data sains dan machine learning dapat diterapkan adalah untuk prediksi. Prediksi berbasis machine learning dapat diterapkan pada banyak aspek teknik kimia contohnya pada Chemical Engineering Plant Cost Index (CEPCI). CEPCI sangat penting untuk perhitungan desain pabrik dan dipengaruhi oleh banyak variabel. Pendekatan machine learning diperlukan untuk memperhitungkan semua variabel tersebut dan mendapatkan hasil yang tepat untuk variabel yang ditargetkan. Dengan demikian, tujuan dari tugas akhir ini adalah merancang program yang mampu memprediksi CEPCI. Alhasil, model regresi yang telah dibuat mampu memprediksi Composite CE Index dengan error rata-rata 3.75% dari index aslinya.


Among most other industrial sectors, the chemical industry is undergoing a significant upheaval driven by concepts known collectively as Industry 4.0. Data science is an important component of Industry 4.0 since it enables the extraction of contextualized information from a variety of data sources. As systems become more complex, the necessity for engineers to appropriately extract signal from data develops dramatically, demanding data literacy and analytics expertise in the next generation of chemical engineering graduates. One of the many cases where data science and machine learning can be applied to is for prediction. Machine Learning based prediction can be applied to many chemical engineering aspects, in this case the Chemical Engineering Plant Cost Index (CEPCI). CEPCI is essential for plant design calculations and is greatly affected by numerous variables. Machine learning approach is needed to account for all said variables and obtain valid result for target variables. Thus, the purpose of this thesis is to design programs that are able to predict CEPCI. As a result, the regression model created was able to predict the Composite CE Index with average error of 3.75% from the real index.

 

 File Digital: 1

Shelf
 S-Putu Adika Reswara.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 59 pages ; illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-07757891 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920525999
Cover