UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Forecasting Kualitas Jalur Transmisi dengan menggunakan Kecerdasan Buatan pada Jaringan Optik DWDM = Machine Learning Algorithm for Forecasting of the Q-Factor in DWDM Network

Tri Kushartadi; Muhamad Asvial, supervisor; Dadang Gunawan, examiner; Ajib Setyo Arifin, examiner; I Gde Dharma Nugraha, examiner (Fakultas Teknik Universitas Indonesia, 2023)

 Abstrak

Teknologi Dense Wavelength Division Multiplexing (DWDM) telah mengalami perkembangan pesat, di mana beberapa vendor telah meningkatkan kapasitas per frekuensi hingga mencapai 1 Tbps (Tera Bit Per Second). Dalam tesis ini, penelitian dilakukan untuk menentukan pola data yang digunakan oleh engineer guna mencapai hasil yang optimal dengan menggunakan kecerdasan buatan. Penelitian ini berfokus pada simulasi jaringan DWDM di Microsoft di Amerika Utara, yang melibatkan beberapa repeater dan mempertimbangkan berbagai faktor yang terjadi dalam jaringan tersebut. Dengan menggunakan data hasil performansi lapangan, ditemukan data yang paling optimal untuk jaringan DWDM tersebut. Dengan mencapai kinerja Q-Factor yang baik, diperoleh juga margin pada jaringan berdasarkan perhitungan kabel optiknya. Estimasi kinerja Q-Factor dapat diperoleh melalui fungsi regresi linear yang bergantung pada perangkat yang dilalui dalam jaringan, seperti Transponder, EDFA, dan media transmisi berupa serat optik. Data hasil pengukuran merupakan data perubahan daya transmisi pada sisi penguat, yang menyebabkan perubahan daya per kanal pada setiap transponder di sisi penerima. Setiap perubahan nilai kinerja Q-Factor pada setiap kanal dianalisis polanya menggunakan machine learning. Data tersebut akan dilakukan proses pelatihan berulang kali guna meminimalkan kesalahan dan mencapai kinerja Q-Factor yang lebih baik. Secara keseluruhan, hasil yang dicapai dalam tesis ini membentuk dasar bagi skema pemodelan kinerja Q-Factor yang akurat serta mendapatkan nilai Q-Factor yang optimal. Hasil penelitian ini memberikan wawasan tentang penggunaan machine learning di masa depan dalam perencanaan jaringan optik DWDM.

This research investigates the development of Dense
Wavelength Division Multiplexing (DWDM) technology in
conjunction with 6G technology to meet the growing demands for
high-speed data transmission. Vendors have significantly
increased the capacity per channel enabling speeds of up to 1 Tera Bit Per Second. The Q-Factor is one of the indicators that
determines the quality of the optical system. Q-Factor plays a
crucial role in evaluating these technological advancements. In
actual practice, engineers need to conduct manual field tests to
obtain the Q-factor value. Engineers must calibrate the equipment
manually onsite. This procedure is time consuming and inefficient. Machine learning can be used to calculate and forecast the Qfactor quickly and automatically. This study designs a machine learning algorithm to forecast the Q-factor value based on the equipment parameters in the field. This study evaluates 4 machine learning algorithms. The data used is obtained from the Microsoft optical network in North America. The Decision tree model archives the best results with an impressive accuracy of 99.5% and low mean squared error (MSE) of 0,00104. The proposed algorithm achieved better results than the previous research.

 File Digital: 1

Shelf
 T-Tri Kushartadi.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Teknik Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 59 pages ; illustration ; 28 cm + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-24-45547485 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920526118
Cover