UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Pengaruh Latar Belakang Citra Kamera Pengawas pada Sistem Estimasi Curah Hujan Berbasis RFCNN = The Influence of Various Surveillance Camera Image Background on RFCNN-Based Rainfall Estimation System

Bayu Achmad Abdillah; Dede Djuhana, supervisor; Adhi Harmoko Saputro, supervisor; Martarizal, examiner; Santoso Soekirno, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia;Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Beberapa jenis instrumen curah hujan yang banyak dipakai seperti rain gauge, citra satelit, dan radar cuaca masih memiliki kekurangan terutama pada resolusi spasial. Instrumen curah hujan alternatif yang banyak dikembangkan adalah dengan menggunakan model Deep Learning dengan masukan citra tangkapan kamera pengawas. Beberapa studi telah berhasil membangun model untuk mendapatkan nilai curah hujan dengan berbagai performa. Namun salah satu kendala yang ditemui dalam pembangunan sistem estimasi curah hujan adalah latar belakang rintik hujan pada citra kamera pengawas. Objek latar belakang yang lebih mengisi citra dibandingkan rintik hujan membuat model dengan banyak bentuk latar belakang tidak dapat mencapai performa yang diinginkan. Penelitian ini menganalisa pengaruh bentuk latar belakang citra kamera pengawas terhadap performa dari sistem estimasi curah hujan. Sistem estimasi curah hujan dibuat dengan model berarsitektur RFCNN (Rainfall Convolutional Neural Network). Objek latar belakang citra yang dipilih pada penelitian ini terdiri dari gedung, jalan beraspal, atap, dan kombinasi antara keduanya. Data curah hujan referensi didapat dari perangkat tipping bucket dengan resolusi 0,2 mm/menit. Hasil eksperimen menunjukan bahwa gedung menjadi bentuk objek latar belakang yang menghasilkan performa yang terbaik dengan nilai MAE sebesar 0.0823 dan MSE sebesar 0.0164, dengan catatan citra yang digunakan adalah citra grayscale. Hasil dari pengujian model menunjukan performa dipengaruhi oleh eksistensi benda bergerak pada latar belakang rintik hujan.

Several types of rainfall measurement instrumens, such as Rain Gauge, satellite imagery, and weather radar, still have limitations, especially in spatial resolution. An alternative rainfall measurement instrumen that has been widely developed is using Deep Learning models with input from surveillance camera images. Some studies have successfully built models to estimate rainfall values with various performances. However, one of the challenges encountered in the development of rainfall estimation systems is the background of surveillance camera images. Objects in the background that occupy a significant portion of the image compared to raindrops make models with certain background shapes unable to achieve the desired performance.This research analyzes the influence of background image shapes from surveillance camera images on the performance of a rainfall estimation system. The estimation system is built using the RFCNN (Rainfall Convolutional Neural Network) architecture. The selected background objects in this study include buildings, paved roads, roofs, and combinations of both. The reference of rainfall data are obtained from a Tipping Bucket device with a resolution of 0.2 mm/minute. The experimental results show that buildings are the background object shape that yields the best performance, with an MAE (Mean Absolute Error) value of 0.0823 and an MSE (Mean Squared Error) value of 0.0164, given that grayscale images are used. The model testing results indicate that performance is influenced by the presence of moving objects in the raindrop background.

 File Digital: 1

Shelf
 S-Bayu Achmad Abdillah.pdf :: Unduh

LOGIN required

  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-96037982 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920528473
Cover