UI - Skripsi Membership :: Kembali

UI - Skripsi Membership :: Kembali

Implementasi Convolutional Neural Network (CNN) pada analisis citra fantom CDMAM = Implementation of Convolutional Neural Network (CNN) in CDMAM phantom image analysis

Fadhlan Akmal Prasetianto; Kristina Tri Wigati, supervisor; Deni Hardiansyah, examiner; Lubis, Lukmanda Evan, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Uji kendali mutu pada citra mamografi dengan menggunakan fantom CDMAM merupakan langkah penting dalam memastikan kualitas proses diagnostik pada pesawat mamografi. Namun, untuk mengatasi masalah variabilitas manusia dan meningkatkan efisiensi waktu, penggunaan Convolutional Neural Network (CNN) dapat menjadi solusi yang akurat dalam menganalisis citra fantom CDMAM. Penelitian ini menerapkan arsitektur CNN Resnet50 pada total 1.392 citra fantom CDMAM dengan dan tanpa regularizer L2. Hasil prediksi CNN pada rentang diameter 0,10 hingga 0,20 mm menunjukkan tingkat prediksi dengan tingkat kesalahan relatif di bawah 32% pada prediksi satuan dan di bawah 16% pada rata-rata prediksi dari 16 citra. Dari hasil prediksi yang diperoleh, diperlukan optimasi lebih lanjut untuk mencapai akurasi prediksi yang lebih tinggi.

Quality control testing on mammography images using CDMAM phantoms is an important step in ensuring the quality of the diagnostic process in mammography devices. However, to overcome human variability issues and improve time efficiency, the use of Convolutional Neural Network (CNN) can be an accurate solution for analyzing CDMAM phantom images. This study applied the CNN architecture ResNet50 to a total of 1.392 CDMAM phantom images with and without L2 regularizer. The CNN prediction results for the diameter range of 0,10 to 0,20 mm showed prediction with relative error below 32% for individual predictions and below 16% for average predictions from 16 images. Based on the obtained prediction results, further optimization is needed to achieve higher prediction accuracy.

 File Digital: 1

Shelf
 S-Fadhlan Akmal Prasetianto.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Skripsi Membership
No. Panggil : S-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LIbUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 36 pages : illustration + appendix
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
S-pdf 14-24-68454784 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920529284
Cover