Artikel Jurnal :: Kembali

Artikel Jurnal :: Kembali

Diagnosis of diabetes using support vector machines with radial basis function kernels

Suwarno (Faculty of Engineering, Universitas Indonesia, 2016)

 Abstrak

Diabetes is one of the most serious health challenges in both developed and developing countries. Early detection and accurate diagnosis of diabetes can reduce the risk of complications. In recent years, the use of machine learning in predicting disease has gradually increased. A promising classification technique in machine learning is the use of support vector machines in combination with radial basis function kernels (SVM-RBF). In this study, we used SVM-RBF to predict diabetes. The study used a Pima Indian diabetes dataset from the University of California, Irvine (UCI) Machine Learning Repository. The subjects were female and ? 21 years of age at the time of the index examination. Our experiment design used 10-fold cross-validation. Confusion matrix and ROC were used to calculate performance evaluation. Based on the experimental results, the study demonstrated that SVM-RBF shows promise in aiding diagnosis of Pima Indian diabetes disease in the early stage.

 Metadata

Jenis Koleksi : Artikel Jurnal
No. Panggil : UI-IJTECH 7:5 (2016)
Entri utama-Nama orang :
Subjek :
Penerbitan : Depok: Faculty of Engineering, Universitas Indonesia, 2016
Sumber Pengatalogan : LibUI eng rda
ISSN : 20869614
Majalah/Jurnal : International Journal of Technology
Volume : Vol. 7, No. 5, July 2016: Hal. 849-858
Tipe Konten : text
Tipe Media : unmediated
Tipe Carrier : volume
Akses Elektronik : http://dx.doi.org/10.14716/ijtech.v7i5.1370
Institusi Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI, Lantai 4 R. Koleksi Jurnal
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
UI-IJTECH 7:5 (2016) 08-23-75699949 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920529542
Cover