UI - Tesis Membership :: Kembali

UI - Tesis Membership :: Kembali

Model Prakiraan Cuaca Harian Berbasis BiLSTM di Bandara Internasional Soekarno-Hatta = Daily Weather Forecast Prediction Analysis based on BiLSTM in Soekarno-Hatta International Airport

Finkan Danitasari; Djati Handoko, supervisor; Ida Pramuwardani, supervisor; Adhi Harmoko Saputro, examiner; Prawito Prajitno, examiner; Suko Prayitno Adi, examiner (Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023)

 Abstrak

Bidirectional Long-Short Term Memory (BiLSTM) yang merupakan perpanjangan dari LSTM dimana dapat meningkatkan efisiensi model dan akurasi pada skenario klasifikasi berdasarkan time series data atau data deret waktu yang lebih panjang secara berulang. Penelitian ini menggunakan algoritma BiLSTM untuk membangun model prakiraan cuaca harian di Bandar Udara Internasional Soekarno-Hatta. Set data yang digunakan adalah data parameter cuaca udara permukan (synoptic) per jam Stasiun Meteorologi Kelas 1 Soekarno-Hatta periode Januari 2018 – Desember 2022. Terjadi ketidakseimbangan pada set data maka digunakan teknik SMOTE dan ADASYN untuk menangani masalah tersebut. Output penelitian ini adalah kondisi cuaca yang dikategorikan menjadi cerah, cerah berawan, berawan, hujan ringan, hujan sedang, hujan lebat, dan hujan petir. Hasil yang diperoleh akan melalui verifikasi dan evaluasi model dengan mencari nilai akurasi dengan membandingkan prakiraan cuaca hasil output model dengan data cuaca aktual menggunakan tabel kontingensi multikategori. Setelah mendapatkan hasil perbandingan akurasi masing-masing model, diperoleh Model BiLSTM – ADASYN mendapatkan nilai akurasi rata-rata tertinggi dibandingkan model lainnya, yaitu sebesar 83,2%. Penelitian ini diharapkan dapat diimplementasikan dan mampu menaikan nilai verifikasi prakiraan cuaca Bandar Udara Soekarno-Hatta demi mendukung keselamatan penerbangan di Indonesia.

Bidirectional Long-Short Term Memory (BiLSTM) which is an extension of LSTM which can improve model efficiency and accuracy in classification scenarios based on time series data or longer time series data repeatedly. This study uses the BiLSTM algorithm to build a daily weather forecast model at Soekarno-Hatta International Airport. The data set used is hourly synoptic weather parameter data for Class 1 Soekarno-Hatta Meteorological Station for the period January 2018 – December 2022. There was an imbalance in the data set, so the SMOTE and ADASYN techniques were used to deal with the problem. The output of this research is weather conditions which are categorized into sunny, sunny, cloudy, cloudy, light rain, moderate rain, heavy rain, and thunderstorms. The results obtained will go through model verification and evaluation by looking for accuracy values ​​by comparing the weather forecast output model results with actual weather data using multi-category contingency tables. After getting the results of comparing the accuracy of each model, it was obtained that the BiLSTM – ADASYN model had the highest average accuracy value compared to other models, which was 83.2%. This research is expected to be implemented and able to increase the value of weather forecast verification at Soekarno-Hatta Airport in order to support flight safety in Indonesia.

 File Digital: 1

Shelf
 T-Finkan Danitasari.pdf :: Unduh

LOGIN required

 Metadata

Jenis Koleksi : UI - Tesis Membership
No. Panggil : T-pdf
Entri utama-Nama orang :
Entri tambahan-Nama orang :
Entri tambahan-Nama badan :
Program Studi :
Subjek :
Penerbitan : Depok: Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Indonesia, 2023
Bahasa : ind
Sumber Pengatalogan : LibUI ind rda
Tipe Konten : text
Tipe Media : computer
Tipe Carrier : online resource
Deskripsi Fisik : xiii, 66 pages : illustration
Naskah Ringkas :
Lembaga Pemilik : Universitas Indonesia
Lokasi : Perpustakaan UI
  • Ketersediaan
  • Ulasan
  • Sampul
No. Panggil No. Barkod Ketersediaan
T-pdf 15-23-32470501 TERSEDIA
Ulasan:
Tidak ada ulasan pada koleksi ini: 9999920530399
Cover